
Point Source in a Moderating Medium 
 

Overview 
A classical problem that is often solved and discussed in some detail when first studying typical 
solutions of the 1-group diffusion equation involves a point source of neutrons in a pure 
moderating medium (i.e. with no fission source).  Of particular interest here is the comparison of 
the point source problem in an infinite versus finite medium, where one can contrast, for 
example, the leakage across a spherical boundary of radius R (for both the infinite and finite 
geometries).  In addition, it is also very instructive to observe how the flux profile, φ(r), changes 
for a variety of different moderator materials.  A Matlab graphical user interface called 
spheremm_gui was designed to address this particular situation and to allow the student to 
easily explore different material options and finite region dimensions, with a focus on how the 
material’s diffusion length and the finite geometry affect the flux distribution and leakage for this 
relatively simple point source problem.  The goal here is to obtain a good understanding of the 
basic principles of neutron diffusion and geometric attenuation within a simple 1-group 
homogeneous spherical system. 

Note:  A similar Matlab GUI, called slabmm_gui, is also available (see Ref. 1).  This planar 
source case shows similar behavior relative to the choice of moderating material (water, graphite, 
or beryllium), but it does not have the geometric attenuation as seen for the spherical geometry 
case.  Thus, it is also very instructive to compare the behavior for the slab and spherical 
geometries.  

The main user interface for spheremm_gui is shown in Fig. 1.  The user can specify the desired 
moderating material (water, graphite, or beryllium), the radius, R, for the finite geometry case, 
and the plot scale for the subsequent flux plot (logarithmic or linear).  With this information, the 
flux profiles for both the infinite and finite geometries are plotted over the range 0 ≤ r ≤ R.  In 
addition, a neutron balance table is given that contains the leakage and absorption rates (within a 
sphere of radius R) for each system with a point source of Q = 1 neutron/sec emitted at the center 
of the sphere (i.e. at r = 0).  The user is encouraged to observe the flux profile and the neutron 
balance information as the material and system size are changed  --  hopefully, this will help you 
better ‘visualize’ the neutron diffusion and geometric attenuation processes that are at work here. 

The remainder of this report documents the equations programmed into the Matlab-based 
spheremm_gui code.  The development here is relatively rigorous so that you can clearly see 
how the equations are derived, since this also gives additional insight into the application of the 
diffusion equation for other situations.  And, you can never see too many examples!!! 

Point Source in an Infinite Moderator 
Consider an isotropic point source emitting Q neutrons/sec in an infinite moderating medium.  
Our goal here is to formally derive a result for φ(r) for this system assuming 1-group theory, 
where r is measured relative to the source location.  In addition, we want to develop analytical 
expressions for the net neutron leakage out of a sphere of radius R and for the absorption rate 
within a volume of radius R  --  and, clearly, these should add to Q since, in steady state, the 
production and total loss rates must balance. 
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Fig. 1  User interface for the spheremm GUI. 

 

The 1-group diffusion equation for the case of no fission is given by (see Ref. 2 or Ref. 3 for 
example) 

2
2

1 Q
DL

∇ φ− φ = −          (1) 

where L2 = D/Σa is the diffusion area.  For 1-D spherical geometry, the Laplacian becomes 

2 2
2
1 d dr

dr drr
φ ∇ φ =  

 
         (2) 

In addition, since the source is only non-zero at r = 0, we can write eqn. (1) as a homogeneous 
equation for r > 0, or 

2
2 2

1 d d 1r 0 for r 0
dr drr L

φ  − φ = > 
 

      [this is a variable coefficient ODE] (3) 

Since this is a variable coefficient ODE, let’s first make the substitution ω = rφ to put this in a 
more manageable form.  Thus, letting 
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r or
r
ω

ω = φ φ =         (4) 

gives  

2
d 1 d
dr r drr
φ ω ω
= − +  

and 
2 2

2
2 2 2 2 2

1 d d 1 d d 1 d d d 1 dr r r
dr dr dr dr dr dr rr r r dr dr

 φ ω ω ω ω ω   = −ω+ = − + + =    
     

 

and, after formal substitution of this latter result into eqn. (3), we get the following balance 
equation for ω(r), 

2

2 2
d 1 0 for r 0
dr L

ω− ω = >      [this is a constant coefficient ODE] (5) 

The general solution to this linear constant coefficient homogeneous ODE is of the form eαr, 
which, upon substitution, gives the characteristic equation 

2
1,22

1 10 or
LL

α − = α = ±        (6) 

and the general solution for ω(r) as  
r L r L

1 2(r) C e C e−ω = +         (7) 

Now, using eqn. (4), the general solution for the flux distribution is simply 
r L r L

1 2
e e(r) C C

r r

−

φ = +         (8) 

To obtain a unique solution, we must apply two boundary conditions to eqn. (8).  In the case of 
the infinite system, where r can become large, we require that the flux must remain finite as         
r → ∞.  Therefore, the growing exponential term in eqn. (8) immediately forces us to set C2 to 
zero, or  

C2 = 0           (9) 

This condition reduces the flux and net current ( J D
 
= − ∇φ ) for this case to the following 

expressions, 
r L

1
e(r) C

r

−

φ =          (10) 

and r L r L r L
1 1 12 2

d 1 1 1 1 1J(r) D C e DC e DC e
dr r rL rLr r

− − −     = − = − − − = +          
  (11) 

where J(r) is the radially-directed neutron current (this is the only non-zero current component in 
this 1-D system).   
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To find an explicit expression for C1, we apply a second boundary condition  --  this time at r = 0.  
At the center of the system we require that the leakage out of a small sphere of radius r approach 
the source strength Q as r approaches zero.  Mathematically, this can be written as 

{ } { }2

r 0 r 0
lim leakage out of sphere of radius r  lim 4 r J(r)   Q
→ →

= π =    (12) 

or r L
1 1 1r 0

r Qlim 4 DC 1 e 4 DC Q or C
L 4 D

−

→

  π + = π = =   π  
   (13) 

Finally, substituting this expression for C1 into eqns. (10) and (11) gives 

r LQ 1(r) e
4 D r

−φ =
π

          flux due to a point source in an infinite medium (14) 

and r L
2

Q 1 1J(r) e
4 rL r

− = + π  
     current due to a point source in an infinite medium (15) 

where one should note that the 1/r term in the flux expression is associated with the geometric 
attenuation inherent in spherical geometry problems (i.e. the surface area increases with 
increasing radius which causes the leakage per unit area to decrease with increasing r), and the   
e-r/L term is related to the diffusion of neutrons within a material characterized by the diffusion 
length, L. 
To address the neutron balance within the sphere, we need to compute the leakage out of a 
sphere of radius R and the absorption rate within the sphere, and then add these to show that they 
sum to the total source within the sphere.  Treating these individually, we have 

Leakage out of a sphere of radius R: 

2 R L
A

Rˆleakage J n dA J(R) 4 R Q 1 e
L


− = ⋅ = π = +  ∫      (16) 

Absorption rate within sphere of radius R: 
R R R2 r L r La

a 20 0 0

Q Qabsorption rate (r) 4 r dr re dr re dr
D L

− −Σ
= Σ φ π = =∫ ∫ ∫   (17) 

but, using a standard integration by parts technique, gives 

udv  uv vdu= −∫ ∫  

u = r  du = dr          and          r Ldv e dr−=   r Lv Le−= −  

and, upon substitution,  

absorption rate  = 
R RRr L r L R L 2 r L

2 200 0

Q QrLe L e dr RLe L e
L L

− − − −   − + = − −      ∫  

or absorption rate = R L 2 R L 2 R L
2

Q RRLe L e L Q Q 1 e
LL

− − −  − − + = − +    
  (18) 
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Source within sphere of radius R [where δ(r) is the Dirac delta function]: 

V
Q (r)dr Q
δ =∫          (19) 

Overall balance equation [leakage + absorption = source]: 

R L R LR RQ 1 e Q Q 1 e Q
L L

− −      + + − + =            
     (20) 

or, Q = Q as expected. 

In particular, the equations actually implemented into spheremm_gui include eqn. (14) for the 
flux profile, and eqns. (16) and (18), respectively, for the leakage and absorption components of 
the overall neutron balance.  These give the appropriate relationships for the infinite medium 
model. 

Point Source in a Finite Moderator 
Consider the same isotropic point source from above placed at the center of a finite sphere of 
moderator of radius R.  If the external boundary condition for this case is such that the flux goes 
to zero at the extrapolated boundary (i.e. at R+d), our goal is to again formally derive a result 
for φ(r) for this system.  Also, as above, we want to develop analytical expressions for the net 
neutron leakage out of the sphere and for the absorption rate within the spherical volume of 
interest  --  and, again, this should equal to the neutron generation rate within the sphere. 

The development of the appropriate equations for this case follows the same procedure as above.  
In particular, the derivation is identical up to eqn. (6).  At this point, however, it is convenient, 
for a finite geometry, to write the general solution to eqn. (5) as 

1 2(r) A sinh r L A cosh r Lω = +        (21) 

where it should be emphasized that eqn. (21) and eqn. (7) are equivalent representations for the 
general solution to the balance equation for ω(r).  The form given in eqn. (7) is often more 
convenient for situations where the independent variable can become large, and eqn. (21) is 
usually better suited for finite geometry cases.  Now, using eqn. (4), we can write the general 
solution for φ(r) for this case as 

1 2
sinh r L cosh r L(r) A A

r r
φ = +        (22) 

As before, to find A1 and A2 to give a unique solution, we need to apply two independent 
boundary constraints.  At the center, where r = 0, we apply the same source condition as above 
that says “The leakage out of a sphere of radius r, as r → 0, must be Q.”  This is stated in 
mathematical terms by eqn. (12).  For the present case 

1 22 2
sinh r L 1 cosh r L 1J(r) DA cosh r L DA sinh r L

rL rLr r
   = − − + − − +   
   

  (23) 

Thus, evaluating eqn. (12) using this expression for the net neutron current gives 

{ } ( ) ( )2
1 2 2r 0

lim 4 r J(r) 4 DA 0 0 4 DA 1 0 4 DA Q
→

π = − π − + − π − + = π =  
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or 2
QA

4 D
=

π
          (24) 

At the outer boundary (i.e. at r = R + d), we say that the flux goes to zero at the extrapolated 
boundary, where d is the extrapolation distance.  Mathematically this statement is written as 

( )R d 0φ + =           (25) 

Therefore, from eqn. (22), we have 

1 2
sinh (R d) L cosh (R d) L0 A A

R d R d
+ +

= +
+ +

 

or 

1 2
cosh (R d) LA A
sinh (R d) L

+
= −

+
        (26) 

Putting the expressions for A1 and A2 back into the expression for φ(r) gives 

Q cosh r L cosh (R d) L sinh r L(r)
4 D r sinh (R d) L r

 +
φ = − π + 

 

or Q 1 R d r R d r(r) sinh cosh cosh sinh
4 Dsinh (R d) L r L L L L

+ + φ = − π +  
  (27) 

But, a useful identity that is often used to simplify expressions containing hyperbolic functions is  

sinh (u v) sinh u cosh v cosh u sinh v− = −       (28) 

Using this identity with eqn. (27) gives the flux due to a point source in a finite medium 

Q 1 R d r(r) sinh
4 Dsinh (R d) L r L

+ − φ =  π +  
      (29) 

And, from the definition of the net current, we can also write the current due to a point source 
in a finite medium as 

2
Q 1 R d r 1 R d rJ(r) D cosh sinh

4 Dsinh (R d) L Lr L Lr
   + − + −      = − − −        π +        

 

or 

2
Q 1 R d r 1 R d rJ(r) cosh sinh

4 sinh (R d) L Lr L Lr
 + − + −    = +    π +     

  (30) 

where, of course, the net current is pointed in the radially outward direction. 

Note here that we again see a 1/r term in the flux expression that is associated with the geometric 
attenuation inherent in spherical geometry and a hyperbolic sine term containing the diffusion 
length, L, that accounts for the diffusion of neutrons within the finite spherical medium. 

 



 

Lecture Notes:  Point Source in a Moderating Medium 
Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (January 2015) 

7 

To address the neutron balance within the finite sphere, we again need to compute the leakage 
and absorption rates within the sphere using the flux and current expressions given respectively 
in eqns. (29) and (30).  Thus, for the finite geometry case, we have 

Leakage out of a finite sphere of radius R: 

2

A

Q R d dˆleakage J n dA J(R) 4 R cosh sinh
sinh (R d) L L L L

     = ⋅ = π = +    +     
∫  (31) 

Absorption rate within a finite sphere of radius R: 
R R2

a 20 0

Q R d rabsorption rate (r) 4 r dr sinh r dr
LL sinh (R d) L
+ − = Σ φ π =  +  ∫ ∫  (32) 

Again, using a standard integration by parts technique, gives 

udv  uv vdu= −∫ ∫  

u = r       du = dr        and        R d rdv sinh dr
L
+ − =  

 
      R d rv Lcosh

L
+ − = −  

 
 

and, upon substitution,  

absorption rate = 
R

R

2 0
0

Q R d r R d rrLcosh L cosh dr
L LL sinh (R d) L

 + − + −   − +    +      
∫  

or absorption rate = 
R

2
0

Q 1 d R d rRLcosh L( L)sinh
sinh (R d) L L LL

 + −   − + −    +      
 

or absorption rate = 2 2
2

Q 1 d d R dRLcosh L sinh L sinh
sinh (R d) L L L LL

 +      − − +      +       
 

or, in final form, we can write the absorption rate within the finite sphere as 

absorption rate = Q R d dcosh sinh Q
sinh (R d) L L L L

    − − +    +     
   (33) 

Source within a finite sphere of radius R [where δ(r) is the Dirac delta function]: 

V
Q (r)dr Q
δ =∫          (34) 

Overall balance equation [leakage + absorption = source]: 

Q R d d Q R d dcosh sinh cosh sinh Q Q
sinh (R d) L L L L sinh (R d) L L L L

             + + − − + =             + +             
   (35) 

or, Q = Q as expected. 
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In particular, the equations actually implemented into the spheremm_gui code for the finite 
geometry case include eqn. (29) for the flux profile, and eqns. (31) and (33), respectively, for the 
leakage and absorption components of the overall neutron balance.  These give the appropriate  
1-group relationships for the finite medium spherical geometry model. 

Summary 
This document provides a detailed derivation of the 1-group flux, current, and neutron balance 
components (leakage and absorption) for the case of an isotropic point source in a pure 
moderating medium  --  with developments for both infinite and finite spherical geometries 
centered on the source location.  The resultant equations have been implemented into the Matlab-
based spheremm_gui code, which provides an easy-to-use GUI where one can explore and 
contrast the use of different moderating materials and geometric dimensions.  The formal 
development of the appropriate equations, coupled with the user-friendly computational tool, 
should allow the user to get a better understanding of the fundamental physics at play here, and 
also get a good feel for both the qualitative and quantitative aspects of 1-group neutron diffusion.   

Have fun using the spheremm GUI!!!  We hope that it helps in the visualization/understanding 
of the basic processes associated with the diffusion of neutrons originating from a point source… 
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