
Planar Source in a Moderating Medium 
 

Overview 
A relatively simple application of the 1-group diffusion 
equation involves an infinite planar isotropic source of 
neutrons in a pure moderating medium (i.e. with no 
fissionable material present).  This situation involves an 
isotropic source emitting Q neutrons/cm2-sec at the 
center of a very large block of moderating material, as 
illustrated in the sketch.  The block is essentially infinite 
in the y and z directions and has a half width, H, in the x 
direction (total width of 2H).  Since the geometry is 
centered on the infinitesimally thin planar source region 
at x = 0 and is infinite in the y-z plane (perpendicular to 
the x-axis), the flux distribution will only vary in the x 
direction.  This allows a simple 1-D Cartesian geometry 
(slab) treatment of the physical system, with a non-zero 
distributed source only at x = 0.   

Mathematically, the source distribution can be formally 
described by  

Q(x) Q (x)= δ   

where δ(x) is the Dirac delta function.  The delta function is infinite at x = 0 and identically zero 
everywhere else.  In addition, it has the following integral property: 

0

00
lim Q (x)dx Q

+ε

−εε→
δ =∫  

This says that the integral of the discontinuous source gives the desired source strength of Q 
neutrons/cm2-s.  This formal treatment can be used if desired or, to keep things relatively simple, 
we will simply say that the source is only non-zero at exactly x = 0, and treat the discontinuous 
source at x = 0 with a special “source condition” (see below). 

For this configuration, we are interested in how the neutrons diffuse throughout the medium for 
the case where H is finite and for the situation where H approaches infinity (i.e. the so-called 
finite and infinite medium planar source problems).  Of particular interest here is the 
comparison of the planar source problem in an infinite versus finite medium, where one can 
contrast, for example, the leakage across a planar boundary at x = H (for both the infinite and 
finite geometries).  In addition, it is also quite instructive to observe how the flux profile, φ(x), 
changes for a variety of different moderator materials.  A Matlab graphical user interface called 
slabmm_gui was designed to address this particular situation and to allow the student to easily 
explore different material options and finite region dimensions, with a focus on how the 
material’s diffusion length, L, and the finite geometry affect the flux distribution and leakage for 
this relatively simple 1-group planar source problem.  The goal here is to obtain a good 
understanding of the basic principles of neutron diffusion within a purely moderating 
homogeneous system. 
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Note:  A similar Matlab GUI, called spheremm_gui, is also available (see Ref. 1).  This point 
source case shows similar behavior relative to the choice of moderating material (water, graphite, 
or beryllium), but the spherical geometry case also has geometric attenuation as well as neutron 
diffusion.  Thus, it is also very instructive to compare the behavior for the slab and spherical 
geometries.  

The main user interface for slabmm_gui is shown in Fig. 1.  The user can specify the desired 
moderating material (water, graphite, or beryllium), the full region width, 2H, for the finite 
geometry case, and the plot scale for the subsequent flux plot (logarithmic or linear).  With this 
information, the flux profiles for both the infinite and finite geometry configurations are plotted 
over the range of positive x values given by 0 ≤ x ≤ H (note that the flux profile is symmetric for 
negative x values).  In addition, a neutron balance table is given that contains the leakage and 
absorption rates within the right half of the block for each system with a planar source of Q = 1 
neutron/cm2-s emitted at the center of the block (i.e. at x = 0).  Note also that, since the source is 
isotropic (neutrons are emitted in all directions with equal probability), only half of the neutrons 
move into the right half of the block.  Since the neutron balance is performed over the range        
0 ≤ x ≤ H and Q = 1 n/cm2-s, then the total generation rate within the region of interest is only 
0.5 n/cm2-s.   

 

Fig. 1  User interface for the slabmm GUI. 
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The user is encouraged to observe the flux profiles and the neutron balance information as the 
material and system size are changed.  The goal, of course, is to better ‘visualize’ the neutron 
diffusion processes that are at work here. 

The remainder of this report documents the equations programmed into slabmm_gui.  The 
development here is quite formal, since this development also gives additional insight into the 
application of the diffusion equation for other situations of interest. 

Planar Source in an Infinite Moderator 
Consider an isotropic planar source emitting Q neutrons/cm2-sec into an infinite moderating 
medium (here the actual medium extends to infinity in the positive and negative x-directions).  
Our goal here is to formally derive a result for φ(x) for this system assuming 1-group theory, 
where x is measured relative to the planar source location.  In addition, we want to develop 
analytical expressions for the net neutron leakage out of the right-half plane at a distance x = H 
from the source and for the absorption rate within this same volume.  Clearly, from a neutron 
balance perspective, these should add to Q/2 since, in steady state, the production and total loss 
rates must balance (remember that only half of the original source neutrons enter the x > 0 
region). 

The 1-group diffusion equation for the case of no fission is given by (see Ref. 2 or Ref. 3 for 
example) 

2
2

1 Q
DL

∇ φ− φ = −          (1) 

where L2 = D/Σa is the diffusion area.  For 1-D slab geometry, the Laplacian simply becomes the 
2nd derivative of the flux (i.e. 2 2 2d dx∇ φ = φ ).  In addition, since the source is only non-zero at 
the centerline of the block at x = 0, we can write eqn. (1) as a homogeneous equation for x > 0, 
or 

2

2 2
d 1 0      x 0
dx L
φ
− φ = >         (2) 

The general solution to this simple 2nd order constant coefficient homogeneous ODE is 
x x x L x L

1 2 1 2(x) C e C e C e C e−α α −φ = + = +       (3) 

where α = 1/L and C1 and C2 are arbitrary coefficients.  Equation (3) represents the general 
solution to eqn. (2). 

As usual, to obtain a unique solution to a 2nd order equation, we must apply two boundary 
conditions to the general solution.  In the case of the infinite system, where x can become large, 
we require that the flux must remain finite as x → ∞.  Therefore, the growing exponential term in 
eqn. (3) immediately forces us to set C2 to zero, or  

C2 = 0           (4) 

This condition reduces the flux and net current ( J D
 
= − ∇φ ) for this case to the following 

expressions, 
x L

1(x) C e−φ =           (5) 
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and x L1
x

DCdˆ ˆ ˆJ(x) J (x) i D i e i
dx L


−φ

= = − =       (6) 

where, for convenience, we will refer to the x-directed current, Jx, in all subsequent usage simply 
as J, since this is the only nonzero component for the 1-D slab problem of interest here (that is,  
Jy = Jz = 0 for the current problem). 

To find an explicit expression for C1, we apply a second boundary condition  --  the so-called 
source condition  --  at x = 0 (i.e. the discontinuous source at x = 0 requires that a special source 
condition be applied in the current situation).  For 1-D Cartesian geometry, this source condition 
can be written at x = 0 as 

 { }x 0

leakage per unit area from leakage per unit area from source contained in the thin box of 
left side of a thin box right side of a thin box width Δx and unit cross sectional arealim

∆ →
+ =  

In mathematical terms, this statement translates to the following equation 

 [ ]
x 0 x 0
lim J(x 0) ( i) J(x 0) (i) lim J(x 0) J(x 0) Q

 
 

→ →
 < ⋅ − + > ⋅ = − < + > =     (7) 

or, so we don’t have to treat the x < 0 case, for a symmetric geometry we can simply write this 
condition as 

 
x 0

Qlim J(x 0) (for a symmetric block)
2→

> =      (8) 

where this is consistent with the above discussion that argued that only half of the original source 
neutrons enter the right half of the homogeneous block centered at x = 0.   

Using eqn. (6), we can apply the appropriate source condition in eqn. (8) to give an explicit 
expression for C1, or 

 x L1 1
1x 0

DC DC Q QLlim e or C
L L 2 2D

−

→

  = = = 
 

     (9) 

Finally, substituting this expression for C1 into eqns. (5) and (6) gives 

x LQL(x) e
2D

−φ =  flux due to planar source in an infinite medium  (10) 

and x LQJ(x) e
2

−=   current due to planar source in an infinite medium (11) 

Thus, the neutron flux decreases with distance from the source location in a simple exponential 
manner.  However, of note, is that the rate of decrease is directly related to the material’s 
diffusion length, L.  In fact, we see that, for any material, at a distance of one diffusion length 
from the source (i.e. x = L in the material of interest), the flux is attenuated by a factor of             
e-1 ≈ 0.368.  Or, said differently, the flux attenuates at a greater rate for a material with a small 
diffusion length (using the Matlab GUI to compare the flux profiles for water, graphite, and/or 
beryllium shows this effect quite nicely).  
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To address the neutron balance within the infinite slab, we need to compute the leakage out of 
the right side of the block at x = H, the absorption rate within this portion of the block, and then 
add these to show that they sum to the total source within this region (i.e. Q/2).  Treating these 
individually, we have 

Leakage out of right side of the block at x = H: 

H L
A

Qleakage ˆ J n dA J(H) (1) eper unit area 2


−= ⋅ = =∫      (12) 

Absorption rate within right side of block up to x = H: 
HH H x L x La

a0 0 0

QL Qabsorption rate (x) (1)dx e dx Leper unit area 2D 2L
− −Σ  = Σ φ = = −  ∫ ∫  

or ( )H LQabsorption rate 1 eper unit area 2
−= −        (13) 

Source within right side of block: 
H

V 0

QQ (x)dr Q (x)dx (where half of the neutrons go to the left side)
2


δ = δ =∫ ∫  (14) 

Overall balance equation [leakage + absorption = source]: 

( )H L H LQ Q Qe 1 e
2 2 2

− −   + − =      
       (15) 

or, Q/2 = Q/2 as expected. 

The equations actually implemented into theMatlab-based slabmm_gui code include eqn. (10) 
for the flux profile, and eqns. (12) and (13), respectively, for the leakage and absorption rate 
components of the overall neutron balance.  These give the appropriate relationships for the 
infinite medium model. 

Planar Source in a Bare Finite Slab of Moderator 
Consider the same isotropic planar source from above placed along the centerline of a finite slab 
of moderator of thickness 2H.  If the external boundary condition for the bare slab is such that 
the flux goes to zero at the extrapolated boundary (i.e. at H+d), our goal is to again formally 
derive a result for φ(x) for this system.  Also, as above, we want to develop analytical 
expressions for the net neutron leakage out of the right half of the block and for the absorption 
rate within the volume of interest  --  and, again, this should equal to the neutron generation rate 
within the volume. 

The development of the appropriate equations for this case follows the same procedure as above.  
However, although the defining balance equations are the same, it is convenient to write the 
general solution for a finite geometry in terms of hyperbolic sine and cosine functions [instead of 
the real exponentials given in eqn. (3)].  Thus, the general solution to eqn. (2) for the finite 
geometry case is usually written as 

1 2 1 2(x) A sinh x A cosh x A sinh x L A cosh x Lφ = α + α = +    (16) 
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where α = 1/L.  Also, we emphasize that eqn. (16) and eqn. (3) are equivalent representations for 
the general solution.  However, the form given in eqn. (3) is simply more convenient for 
situations where the independent variable can become large, and eqn. (16) is better suited for 
finite geometry cases.   

As before, to find A1 and A2 to give a unique solution, we need to apply two independent 
boundary constraints.  At the right boundary of the bare slab (i.e. at x = H + d), we say that the 
flux goes to zero at the extrapolated boundary, where d is the extrapolation distance (this is the 
standard vacuum boundary condition used in the diffusion theory approximation to neutron 
transport).  Mathematically this statement is written as 

( )H d 0φ + =           (17) 

Therefore, from eqn. (16), we have 

1 20 A sinh (H d) L A cosh (H d) L= + + +  

or 1 2
cosh (H d) LA A
sinh (H d) L

+
= −

+
        (18) 

For the second boundary constraint, we apply the same source condition as above [see eqn. (8)] 
at the centerline of the block.  For the present case, the current is given by 

( )1 2
d Dˆ ˆJ(x) D i A cosh x L A sinh x L i
dx L

 φ
= − = − +  

or 2DA cosh (H d) LJ(x) cosh x L sinh x L
L sinh (H d) L

 +
= − − + + 

    (19) 

Thus, evaluating eqn. (8) using this expression for the net neutron current gives 

 2 2
x 0

DA DAcosh (H d) L cosh (H d) L Qlim cosh x L sinh x L
L sinh (H d) L L sinh (H d) L 2→

  + + − − + = =  + +   
   

or 2
QL sinh (H d) LA
2D cosh (H d) L

+
=

+
        (20) 

Note that substitution of this expression into eqn. (18) gives a simple result for A1, or 

1
QLA
2D

= −           (21) 

Now putting the expressions for A1 and A2 back into the expression for φ(x) gives the flux due to 
a planar source in a finite medium as 

QL sinh (H d) L(x) cosh x L sinh x L
2D cosh (H d) L

 +
φ = − + 

     (22) 

And, from the definition of the net current, we can also write the current due to a planar source 
in a finite medium as 
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Q sinh (H d) LJ(x) cosh x L sinh x L
2 cosh (H d) L
 +

= − + 
     (23) 

where, of course, the net current for x > 0 is pointed in the +x direction. 

To address the neutron balance within the finite bare slab, we again need to compute the leakage 
and absorption rates within the right half of the block using the flux and current expressions 
given respectively in eqns. (22) and (23).  Thus, for the finite geometry case, we have 

Leakage out of right side of the block of half width H: 

A

Q sinh (H d) Lleakage ˆ J n dA J(H) (1) cosh H L sinh H Lper unit area 2 cosh (H d) L
  +

= ⋅ = = − + 
∫  (24) 

Absorption rate within the block of half width H: 

H Ha
a0 0

QL sinh (H d) Labsorption rate (x) (1)dx cosh x L sinh x L dxper unit area 2D cosh (H d) L
 Σ +

= Σ φ = − + 
∫ ∫  

or 
H

0

Q sinh (H d) Labsorption rate Lsinh x L Lcosh x Lper unit area 2L cosh (H d) L
 +

= − + 
 

or Q sinh (H d) L Qabsorption rate sinh H L cosh H Lper unit area 2 cosh (H d) L 2
 +

= − + + 
   (25) 

Source within right side of block: 
H

V 0

QQ (x)dr Q (x)dx (where half of the neutrons go to the left side)
2


δ = δ =∫ ∫  (26) 

Overall balance equation [leakage + absorption = source]: 

Q sinh (H d) L Q sinh (H d) L Q Qcosh H L sinh H L sinh H L cosh H L
2 cosh (H d) L 2 cosh (H d) L 2 2

      + +   − + − + =      + +         
  (27) 

or, Q/2 = Q/2 as expected. 

In particular, the equations actually implemented into the slabmm_gui code for the finite bare 
slab geometry case include eqn. (22) for the flux profile, and eqns. (24) and (25), respectively, 
for the leakage and absorption rate components of the overall neutron balance.  These give the 
appropriate 1-group relationships for the finite medium bare slab geometry model. 

Summary 
This document provides a detailed derivation of the 1-group flux, current, and neutron balance 
components (leakage and absorption) for the case of a planar source in a pure moderating 
medium  --  with developments for both infinite and finite slab geometries centered on the source 
location.  The resultant equations have been implemented into the slabmm_gui code, which 
provides an easy-to-use Matlab-based GUI where one can explore and contrast the use of 
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different moderating materials and geometric dimensions.  The formal development of the 
appropriate equations, coupled with the user-friendly computational tool, should allow the user 
to get a better understanding of the fundamental physics at play here, and also get a good feel for 
both the qualitative and quantitative aspects of 1-group neutron diffusion in a simple 1-D 
Cartesian geometry.   

Have fun using the slabmm GUI!!!  We hope that it helps in the visualization/understanding of 
the basic processes associated with the diffusion of neutrons originating from a planar source… 
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