
Steady-State Temperature Profiles in a UMLRR Fuel Channel 

 

Introduction 

When modeling some phenomena of interest, one should always start with a relatively simple 

model so that you can obtain a good understanding of the basic behavior of the system.  Once 

you have a good appreciation for the basic theory and a feel for the qualitative and quantitative 

behavior of the system, then you can add additional complexities, as needed, to model the real 

phenomena of interest.  This documentation follows this philosophy with the development of a 

relatively simple model for the energy removal process within a plate-type fuel channel.  The 

specific case of interest involves a single fuel plate and associated coolant channel within the 

UMass-Lowell Research Reactor (UMLRR).  The goal is to compute and plot the axial 

temperature profiles within the coolant channel, clad, and fuel plate for the average or hot plate 

within the reactor.  In addition, this report also addresses the modeling of both the forced and 

natural convection cases. 

We start with a specific representation of a plate-type fuel assembly that uses a variety of 

assumptions to simplify the analysis to the point that analytical solutions can be obtained.  The 

focus here will be on a single plate and channel configuration (a unit cell analysis), with the 

assumption that this same configuration is repeated many times within a single assembly, which 

is then repeated multiple times to make up the actual UMLRR core.  

We break the discussion/analyses in this set of notes into several major sections: 

• Background description of the UMLRR core and the physical fuel element arrangement. 

• Development of the steady state heat conduction equation. 

• Heat transfer in the solid fuel plate and cladding (radial heat transfer). 

• Heat transfer into the coolant channel (energy flows both radially and axially). 

• Description of the axial power profile in a typical fuel plate. 

• Calculation of the heat transfer coefficient in both forced and natural convection flows. 

• Treatment of the water properties versus temperature. 

• Computation of the mass flow rate in natural convection flows. 

• Nominal UMLRR operational and design data. 

• Typical results for the UMLRR. 

Note that all the analyses done here assume steady state conditions. 

Background Description of a UMLRR Fuel Element 

In this work we consider a series of heated, parallel, vertical, rectangular channels, such as the 

coolant channels within a standard fuel element in the UMass-Lowell research reactor 

(UMLRR), as illustrated in Figs. 1-4.  These figures show a 3-D view of the basic fuel assembly 

geometry containing a series of fuel plates and coolant channels, a view of the reactor core box 

and the 9x7 grid structure that holds the fuel elements and a variety of other core components, 

the specific arrangement of the current core configuration showing the placement of 19 full and 2 
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partial fuel elements within the grid (M-2-5 configuration), and a CAD drawing showing the top 

view and dimension details of a typical fuel assembly.  The reactor core is located in a large open 

pool containing about 76000 gallons of water.  The top of the fuel region is about 25 feet below 

the surface of the pool. 

The UMLRR is licensed to operate at a maximum thermal power of 1 MW in forced convection 

mode, where the coolant flow is downward through the core with a total flow rate of about 1650 

gpm.  The facility can also operate in natural convection mode with a maximum licensed power 

level of 100 kW.  In this case, the density differences in the fuel channels and the surrounding 

pool water create a buoyancy force that causes the coolant to flow upward in the channels.  Our 

interest in this set of notes is to develop a mathematical model for determining the steady state 

axial profile of the coolant, plate surface, fuel surface, and fuel centerline temperatures under a 

variety of typical conditions that can exist in the reactor (including both forced and natural 

convection conditions). 

 

 

Fig. 1  Isometric view of a typical fuel assembly. 
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Fig. 2  Core box geometry showing placement of various components within the UMLRR. 
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Fig. 3  Core layout showing placement of the fuel assemblies within the UMLRR grid. 

 

 

Fig. 4   Standard fuel assembly geometry (top view) with 16 fuel plates per assembly. 
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Conduction Heat Transfer in a Solid Control Volume 

We start with a general development of the heat conduction equation.  At steady state, the rate of 

energy production in volume V minus the net rate of energy flow out of V must balance, or 

V A

ˆq '''dr q '' n dA 0             (1) 

where q = volumetric internal energy production rate (W/m3) 

dr  = differential volume (m3) 

q ''  = heat flux vector (W/m2) 

n̂  =  outward pointing normal vector (unit vector perpendicular to the surface)  

dA = w dz = differential area, with w representing the width of the fuel region. 

But the Divergence Theorem allows us to convert the area integral in eqn. (1) into a volume 

integral, 

A V

ˆq '' ndA q ''dr            (2) 

Therefore, eqn. (1) becomes 

V V

q '''dr q ''dr 0            (3) 

And, since these are integrated over the same arbitrary volume, we can write a differential 

balance (per unit volume) as 

q '' q ''' 0            (4) 

But Fourier’s Law of heat conduction gives 

q '' k T             (5) 

Therefore the steady state heat conduction equation becomes 

k T q ''' 0             (6) 

If k is constant, then this becomes 

2T q '''/ k 0            (7) 

where k is the thermal conductivity of the material (W/m-°C) 

Note that the units for the temperature gradient are 
oT C/m  , 

2 o 2T C/m   and, for q/ k, 

we have 

3 o

o 2

q ''' W / m C

k W / m C m
 


 

which, as expected, are identical to 2T [via eqn. (7)].   
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In preliminary analysis, we often let k be constant and use eqn. (7) for the geometry of interest.  

In later, more detailed analysis, k is allowed to be space and temperature dependent (which leads 

to a nonlinear relationship).  This situation is usually not treated analytically  --  instead 

numerical methods are applied.  

Thus, for our simple preliminary analysis here, we will assume that k is an appropriately 

averaged constant for each solid material of interest. 

Heat Transfer in the Solid Fuel Plate 

The basic configuration of interest in this development is illustrated in Fig. 5 where the specific 

notation is defined as follows: 

a = half thickness of fuel,   b = clad thickness,   c = half thickness of water channel 

Tm = fuel centerline temperature,   Ts = fuel surface temperature 

Tc = clad surface temperature,   Tb = bulk coolant temperature 

where all the temperatures are functions of the axial location, z  [i.e. all Tj  Tj(z)]. 

 

 

Fig.  5   Sketch of 1-D fuel plate, clad, and coolant geometry. 

 

The assumptions inherent in the subsequent modeling are listed below: 

1. All energy is transported radially through the fuel, through the clad, to the coolant.  Since the 

coolant flow is in the axial direction, everything will vary with axial location z.  Also note 

that the internal energy generation term, q, varies axially.  However, at each axial layer, z, 

we are assuming that all the energy flows in the radial direction.  This allows us to use the   

1-D version of eqns. (6) and (7) in the formal analysis. 

2. Assume k = constant  --  therefore we will use eqn. (7) for the heat transfer analysis. 
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3. Assume q is constant at each axial layer, that is q(x,y,z) = q(z) = constant at each z. 

Also all the plates have the same q for the average plate analysis and this value is simply 

multiplied by the radial peaking factor for the hot plate analysis. 

4. Assume symmetry at x = 0, or 
x 0

dT
0

dx 

  

Note that all these assumptions are very reasonable for the problem of interest here.  Assumption 

#4 is not strictly valid for fuel plates near the end of the fuel assembly, but it is a very good 

approximation for the plates in the interior of the element. 

Fuel Region (at any axial location z) 

Equation (7) specialized to the case of 1-D Cartesian geometry can be written as 

2

2
f

d T q '''
0

kdx
            (8) 

where kf is the thermal conductivity of the fuel.  Integrating this expression gives 

1

f

dT q '''
x C

dx k
            (9) 

and a second integration gives  

2
1 2

f

q '''
T(x) x C x C

2k
             (10) 

Now applying the symmetry boundary condition at x = 0, eqn. (9) gives 

1

x 0

dT
0 C

dx 

   

At x = a (the fuel meat half thickness), the fuel surface temperature is denoted as Ts, as shown in 

Fig. 5.  Thus, evaluating eqn. (10) at x = a with C1 = 0 gives 

2 2
s 2 2 s

f f

q ''' q '''
T a C or C T a

2k 2k
      

which yields a continuous expression for the radial temperature distribution within the fuel meat, 

2 2
s

f

q '''
T(x) T (a x )

2k
           (11) 

For convenience we also denote the fuel centerline temperature as T(0) = Tm (since, in a 

symmetric arrangement, the maximum temperature will occur at the center of the plate).  With 

this notation, eqn. (11) reduces to  

2
m s

f

q '''
T T a

2k
           (12) 

As you probably already know, for 1-D heat transfer analyses, it is often convenient to use an 

electrical analogy to help interpret and visualize the various energy flow rates.  In electrical 
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circuits, the current, I, times the resistance, R, is equal to the driving potential or voltage, V, or  

V = IR  --  this is referred to as Ohm’s Law.  Within this context we can think of the temperature 

difference, Tm – Ts, as the driving potential for heat flow in the fuel region, and define q as the 

heat flux or energy flow rate per unit area out of the fuel region (right face).  The heat flux in our 

example is analogous to the current (i.e. the quantity that flows) in an electrical circuit.  Thus, we 

can write Ohm’s Law for 1-D heat transfer in 1-D Cartesian geometry as 

m s

th f

T TV T
I or q ''

R R R


          (13) 

where Rth is a generic thermal resistance (i.e. the resistance to energy transport in the region 

between the given T) and Rf is the specific thermal resistance for the fuel material.   

For Cartesian geometry and steady state conditions the same heat flux given in eqn. (13) must 

also pass through the clad and into the coolant (all the energy generated in the fuel is removed by 

the coolant).  Based on this observation, we can also extend this electrical analogy to the clad 

and coolant regions (refer to Fig. 5 for the pertinent notation), or 

m s s c c b

th f c b

T T T T T TT
q ''

R R R R

  
          (14) 

where Rc is the thermal resistance to heat transfer in the clad region and Rb is the resistance to 

convection heat transfer from the clad surface to the bulk fluid.  

Equation (14) is extremely important.  To see this, assume for the moment that we know Tb(z) 

and the three thermal resistances, Rf, Rc, and Rb.  With these quantities and eqn. (14), we can 

write explicit expressions for Tc(z), Ts(z), and Tm(z), as follows: 

c b bT (z) T (z) R q ''(z)          (15a) 

 s c c s b c bT (z) T (z) R q ''(z) or T (z) T (z) R R q ''(z)        (15b) 

 m s f m b f c bT (z) T (z) R q ''(z) or T (z) T (z) R R R q ''(z)        (15c) 

where q(z) can be written in terms of the volumetric heat generation rate, q(z) , as 

 q ''(z) a q '''(z)          (16) 

with the variable ‘a’ representing the half width of the fuel meat (i.e. aq(z) is the energy 

transfer rate per unit area out of the fuel at axial location z). 

For a given problem, the geometry parameters and the axial heat generation rate profile must be 

known [see below for further discussion of q(z)].  Thus, evaluation of eqns. (15a) – (15c) 

reduces to actually determining explicit expressions for the three thermal resistances and the 

axial profile of the bulk coolant temperature, Tb(z). 

For Rf we can compare eqns. (12) and (13) to immediately give 

 f
m s f

f

2k a
T T q '''a q '' or R

a 2k
         (17) 

where Rf is the equivalent thermal resistance of the fuel. 
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Clad Region 

For the thermal resistance in the clad region, we again solve the heat conduction equation, but 

this time q = 0 since we assume negligible energy deposition directly in the clad. Therefore, the 

heat conduction equation in 1-D Cartesian geometry is simply 

2

2

d T
0

dx
           (18) 

and integrating twice yields the general solution 

T(x) = C1x + C2         (19) 

Now, applying the appropriate boundary conditions at x = a and x = a+b gives 

T(a) = Ts = C1a + C2  and  T(a+b) = Tc = C1(a+b) +C2  (20) 

Subtracting these two expressions gives 

Tc – Ts = C1b  or  c s
1

T T
C

b


      (21) 

and substituting the expression for C1 into the first expression in eqn. (20) gives 

c s) c s
s 2 2 s

(T T (T T )
T a C or C T a

b b

 
        (22) 

Finally, putting these into the general solution and simplifying gives 

c s c s
s

T T (T T )
T(x) x T a

b b

 
    

or 

c s
s

T T
T(x) T (x a) for a x a b

b


           (23) 

Now, to use the electrical analogy again, we know that the heat flux leaving the right face (at      

x = a+b) is given by Fourier’s law, 

c s s c
c c c

x a b

T T T TdT
q '' k k k

dx b b 

 
           (24) 

where kc is the clad thermal conductivity and b is the thickness of the clad. 

Finally, comparing this to the definition of the clad thermal resistance, Rc, given by eqn. (14), we 

see that Rc can be written explicitly as 

c

c

b
R

k
           (25) 
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Heat Transfer to the Coolant Channel 

To address the transfer of energy from the fuel to the coolant, let’s first isolate a single coolant 

channel with dimensions D, W, and H to specify the channel geometry as shown in Fig. 6 (note 

that the depth D in Fig. 6 is equivalent to 2c from Fig. 5, where c was defined as the half 

thickness of the channel, and that H refers to the active fuel height).  For long, thin fuel elements, 

axial conduction is negligible compared to the radial flow of energy from the fuel plate to the 

coolant channel.  Thus, in each axial increment, all the energy generated in the fuel is transferred 

to the coolant via convection heat transfer. 

 

Fig. 6  Geometry for a single coolant channel and balance on coolant node of height z.  

 

A steady state energy balance on a fluid node can be given as shown on the right side of Fig. 6.  

This balance can be written mathematically as 

z z z
mh mh q ''(z)2W z 0


           (26) 

where  m  is the mass flow rate in a single coolant channel 

  h is the fluid enthalpy per unit mass 

and   q = q2Wz is the heat transfer from the fuel to the coolant within axial height z 

Now, dividing eqn. (26) by z and taking the limit as z  0 gives 

dh(z) 2W
q ''(z)

dz m
          (27) 

However, for single phase systems, we can relate the enthalpy change to a change in temperature 

via an average specific heat (i.e. dh = cpdT), giving 

b
b in

p

dT (z) 2W
q ''(z) with T (0) T

dz mc
       (28) 



 

Lecture Notes:  Steady State Temperature Profiles in a UMLRR Fuel Channel 

Dr. John R. White, Chemical and Nuclear Engineering, UMass-Lowell  (March 2018) 

11 

where Tb(z) is the bulk fluid temperature at axial height z and Tin is the inlet coolant temperature 

from the pool.  If the channel mass flow rate, m , and the axial profile of the heat flux, q(z), are 

known, then this simple 1st order IVP can be solved for the desired temperature profile, Tb(z). 

Note that once the coolant temperature, Tb(z), has been determined, one can also find the clad 

surface temperature [which we defined previously as Tc(z)] from Newton’s Law of Cooling,  

 c bq ''(z) h T (z) T (z)          (29) 

where h is the heat transfer coefficient.  (Note: In the above discussion h was used for enthalpy   

--  but in eqn. (28) we wrote this variable in terms of the temperature  --  so now we can use h to 

refer to the proportionality constant in Newton’s Law of Cooling.)  Solving eqn. (29) for the clad 

surface temperature gives 

c b

1
T (z) T (z) q ''(z)

h
          (30) 

and, comparing this to eqn. (15a), we see that the resistance to energy transfer between the clad 

and bulk fluid is simply, Rb = 1/h. 

Axial Profile of the Surface Heat Flux 

The energy generation in the fuel results from the nuclear fission process.  In steady state, all the 

energy produced within the fuel plate must leave the plate via convection heat transfer on its 

surfaces.  If there are Nfp fuel plates in the core and the total power level is denoted as Ptot, then 

the power produced by the average or typical fuel plate is simply Pplate = Ptot/Nfp.  Now, the 

average heat flux on the surface of the plates is simply the plate power divided by the heat 

transfer surface area.  Thus, using the geometry notation from Fig. 6, we have 

plate tot
ave

fp

P P
q ''

2WH 2N WH
          (31) 

In a typical UMLRR fuel plate, the spatial distribution of the fission rate is nearly constant in the 

x and y directions for any given z location, and its axial shape is roughly sinusoidal in nature (it 

is slightly bottom-peaked but, for simplicity, we will assume axial symmetry here).  In the ideal 

symmetric case, we can write this axial dependence as a chopped sinusoid,  

 max

e

(z )
q ''(z) q '' sin

H

   
  

 
        (32) 

where maxq ''  =  peak heat flux (W/m2) within an average plate (this occurs at core center --  

    at z = H/2  --  for a symmetric axial profile) 

  He =  effective neutronic height of the core (m) 

  =  reflector savings (m) which is defined through the relationship between H and  

    He, where eH H 2   ) 

The peak heat flux, maxq '' , is related to the plate power [and aveq '' via eqn. (31)] as follows: 
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W H H

plate max max
0 0 0

e e

(z ) (z )
P 2 q '' sin dydz 2Wq '' sin dz

H H

        
    

   
    

or, 

 
plate

max
H

0
e

P
q ''

(z )
2W sin dz

H


   
 
 



       (33) 

Given the necessary core design and operational data, eqn. (33) can be evaluated to find a 

numerical value for maxq '' for use in eqn. (32) to describe the axial profile of the heat flux along 

the plate surface.  This expression, in turn, can be used in eqns. (28) and (30) to define Tb(z) and 

Tc(z), respectively. 

Performing the operation indicated in eqn. (33) gives 

 
plate

max

e

e e

P 1
q ''

2WH (H )
cos cos

H H




      
   

   

      (34) 

Now, putting eqns. (32) and (34) into eqn. (28) and solving the 1st order ODE leads to 

 
plate e e

b in

p

e e

(z )
cos cos

P H H
T (z) T

mc (H )
cos cos

H H

       
    

     
       

    
     

     (35) 

Thus, for a set of data specific to the UMLRR (Pplate, H, W, , m , Tin, etc.  --  see below for 

specific values), eqn. (35) gives the desired axial bulk coolant temperature profile. 

The Heat Transfer Coefficient 

Even with a known axial profile for the coolant temperature, one still needs a reasonable estimate 

of the heat transfer coefficient, h, to compute the plate surface temperature profile, Tc(z).  This 

parameter, however, is usually obtained from empirical correlations that are given in terms of the 

local fluid properties, the type of flow, and the geometry of the system.  There are a variety of 

these heat transfer correlations available in the literature for a wide range of situations.  These 

correlations can vary significantly depending upon the flow regime that is present (i.e. laminar or 

turbulent flow) and whether the flow is developing or fully developed.  Note also that, even for 

fully developed flow, the heat transfer coefficient may be a function of position, h  h(z), since 

the correlations are often evaluated using the local bulk fluid properties.  Thus, if the variation of 

Tb(z) is significant, the variation in the fluid properties may also be important. 

Before specifying particular correlations for h, we first define a number of dimensionless 

parameters that are often used within the empirical correlations: 

 Nusselt Number hhD
Nu

k
        (36) 
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 Reynolds Number wVD
Re





       (37) 

 Prandtl Number 
pc

Pr
k


        (38) 

where 

 Heated Diameter f
h

h

4A4 x flow area
D

heated perimeter P
      (39) 

 Wetted Diameter f
w

w

4A4 x flow area
D

wetted perimeter P
      (40) 

 Mass Flow Rate fm A V         (41) 

where the average fluid velocity is given by the symbol V, and , , k, and cp are the standard 

symbols for the density, viscosity, thermal conductivity, and specific heat of the fluid, 

respectively.  Note that the wetted diameter is usually referred to as the hydraulic diameter 

(usually with the symbol Dh). 

Now, for internal single-phase fully-developed turbulent flows, the Dittus Boelter correlation 

is often used to estimate an appropriate convective heat transfer coefficient, where 

 0.8 nNu 0.023 Re Pr          (42) 

with n = 0.3 when the fluid of interest is being cooled, and n = 0.4 when the fluid is being heated.  

Note also that all the fluid properties that go into the computation of Re and Pr for use in eqn. 

(42) are evaluated at the local bulk fluid temperature, Tb(z).  Note that, in the literature, this 

relationship is recommended for use for situations where Re ≥ 10,000 and 0.7 ≤ Pr ≤ 160. 

An alternative expression for the Nusselt number for turbulent flow applications, developed by 

Sieder and Tate, that addresses the difference between the viscosity of the bulk coolant and that 

of the coolant adjacent to the clad wall (since the temperatures and viscosities at these locations 

can be quite different) is given as 

 

0.14

0.8 1/3

s

Nu  0.027 Re  Pr
 

  
 

       (43) 

Here, the subscript s refers to the surface of the cladding.  Thus, all properties should be 

evaluated at the bulk coolant temperature except for μs, which should be evaluated at the clad 

surface temperature.  Both correlations, the Dittus Boelter and Sieder Tate relationships, are 

discussed in further detail in Fundamentals of Heat and Mass Transfer by F. P. Incropera and 

D. P. DeWitt.  Note that, if the Sieder Tate correlation is used, an iterative scheme is needed to 

converge on the correct value of the surface temperature and the value of μs.  Since the Dittus 

Boelter relation uses properties evaluated at only the bulk fluid temperature, no iteration is 

required for this correlation. 
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For single phase fully-developed laminar flow problems, where Re ≤ 2300, the combined fluid 

flow and heat transfer problem can be solved analytically for certain relatively simple situations.  

In particular, for a constant wall heat flux or a constant wall temperature, one can simply “look 

up” the analytical solution.  Unfortunately, however, the problem of interest here has neither a 

constant heat flux nor a constant wall temperature.  To resolve this situation, one often assumes 

that the real result lies between these two situations  --  and, lacking further information, an 

average value of the analytically-derived Nusselt number is often used.  We will take this 

approach here and use the analytical relations given in Table 8.1 from Fundamentals of Heat 

and Mass Transfer by F. P. Incropera and D. P. DeWitt (see below).  Thus, for internal laminar 

flow problems, Nu = constant, where the constant can be obtained from averaging the values in 

the given table for the geometry of interest. 

 

 

Note that there is a transition region between laminar and turbulent flow where the above 

correlations are not fully valid.  However, for the current study, we will use the above table for 

flows with Re ≤ 2300 (laminar region) and use either eqn. (42) or eqn. (43) for all cases where 

Re ≥ 2300 (transition and turbulent regions).  In addition, we will also ignore entrance effects 

altogether and simply apply these expressions for fully developed flow along the full length of 

the fuel assembly. 
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Thus, given information about the fluid environments (flow parameters, bulk temperatures, and 

material properties evaluated at these temperatures), we can use the above information to 

estimate the Nusselt number at any point along the channel height.  With Nu known, eqn. (36) 

gives the desired heat transfer coefficient, h(z), which can then be used in eqn. (15a) [or eqn. 

(30)] to compute the axial profile of the plate’s surface temperature. 

Water Properties versus Temperature 

The properties of liquid water at atmospheric pressure are available from several sources (i.e., 

see Perry’s Chemical Engineer’s Handbook (1999) or browse the web at www.thermexcel.com).  

A polynomial curve fit was performed to the data and the following equations can be used to 

evaluate the physical properties of liquid water at atmospheric pressure as a function 

temperature:  

11 4 9 3 7 2 5 3(T) 3.118 10 T 8.702 10 T 9.531 10 T 5.427 10 T 1.772 10                (44) 

5 3 3 2 2(T) 1.583 10 T 5.947 10 T 1.718 10 T 1000              (45) 

6 4 4 3 2 2
Pc (T) 3.149 10 T 7.683 10 T 7.403 10 T 2.851T 4215             (46) 

-6 2 -3k(T)  -7.310 10 T   1.840 10 T  0.5695           (47) 

In these equations, temperature (T) has units of C, dynamic viscosity (μ) has units of kg/m-s, 

density (ρ) has units of kg/m3, specific heat (cp) is given in units of J/kg-K, and the thermal 

conductivity (k) has units of W/m-K.  These functions are especially useful in computer 

calculations.  In the current mathematical model, eqns. (44) – (47) are used, as needed, to 

evaluate the viscosity, density, specific heat, and thermal conductivity of water as a function of 

water temperature. 

Additional Considerations for the Natural Convection Case  

At this point we have a complete model for determining the desired axial temperature profiles 

within the coolant channels in the UMLRR assuming, of course, that all the pertinent design and 

operational data for the system are available  --  including the channel mass flow rate.  In the 

forced flow mode, the channel mass flow rate, m , can be determined from the overall pump flow 

rate and the flow distribution in the various in-core elements (this is a quantity that we know and 

it is independent from the operating power level).  In natural convection flow, however, things 

are a bit more complicated, since the channel mass flow rate is directly related to the temperature 

(and density) differences between the channel and the surrounding pool.  Thus, for this case, m  

is a strong function of the average channel temperature and the buoyancy forces that result from 

the fluid density differences.  This makes eqn. (28) nonlinear and much more difficult to solve  --  

and, to make matters worse, we can’t even write a closed form expression for the actual 

functional relationship, bm f (T ) , that is involved here. 

However, we do understand the fundamental physics that is associated with natural convection, 

so we can formulate an algorithm for including density effects into the above model.  In 

particular, consider the sketch given in Fig. 7.  This diagram shows two channels, a coolant 

channel and a much larger pool channel, that are connected by a common plenum at the top and 

bottom.  Each plenum region has a common pressure denoted as Ptop and Pbot, for the upper and 

lower regions, respectively.  In the large pool channel, the flow is downward, but the actual fluid 

http://www.thermexcel.com/
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velocity here is very low (because of the large flow area).  In the coolant channel within the core 

region, the flow is upward, with a much larger fluid velocity relative to the pool velocity 

(because of the much smaller flow area).  Flow in these channels can be approximated by the 

general energy equation for “quasi” steady-state incompressible flow (see any standard fluid 

mechanics text): 

2 2
1 1 2 2

1 1 L 2 2

P v P v
z h z

2g 2g
     

 
      (48) 

where we have used standard notation ( g   is the specific weight,  is the kinetic energy 

correction factor, etc.), with hL representing the head loss due to friction in the system.  In this 

equation, point 1 represents the channel inlet and point 2 the channel outlet (the energy equation 

is always written in the direction of flow).  

 

Fig. 7  Free convection path completed by the common upper and lower plenum regions. 

 

Writing this equation specifically for the “pool channel” where the velocity is essentially zero 

and there are no friction losses gives 

2 1
1 2

pool pool pool

P P P
z z

g


   

  
 

or, bot top poolP P P gL             (49) 

where L is the full length of the channel (note that L ≥ H).  This relationship is exactly what was 

expected from our understanding of fluid statics  --  where the increase in pressure in a near static 

fluid column of height L is simply due to the weight of the fluid in the column. 

Now, writing the energy equation in the direction of flow for the “coolant channel” where the 

flow is in the upward direction, gives 

1 2
2 1 L

coolant coolant coolant

P P P
z z h

g


    

  
 

or, bot top coolant coolant LP P P gL gh            (50) 
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In developing eqn. (50), we have cancelled the kinetic energy terms since the velocities at the 

inlet and outlet of the channel are essentially the same, and we have assumed that the density 

change is relatively small so that an average (constant) density can be used in the energy 

equation (that is, 
avebot top coolant b       ). 

Since the top and bottom of the pool and coolant channels have a common upper and lower 

plenum region, the P in eqns. (49) and (50) must be the same.  Thus, equating these expressions 

gives 

 bouyancy pool coolant coolant L frictionP gL gL gh P             (51) 

The first three expressions in this equation are related to the buoyancy force that is developed 

due the density difference in the pool and the coolant channels, and the last two terms are due to 

the friction losses along the coolant channel.  In words, it simply says that, in steady-state, the P 

caused by the buoyancy forces must be identical to the P due to friction  --  that is, the velocity 

that develops in the channel in natural convection flow will increase until the friction loss in the 

channel exactly balances the buoyant forces on the channel.  With this understanding, we now 

have a way to relate the temperature of the channel fluid to the mass flow rate within the 

channel! 

In particular, for viscous internal flow problems, the friction loss in a channel of constant area is 

given by 

2 2

L i

ih

L V V
h f K

D 2g 2g

 
   

 
         (52) 

where Dh is the hydraulic diameter, L is the length of the channel, f is the dimensionless Darcy 

friction factor, Ki is the loss coefficient associated with the ith “minor loss” component within the 

system (accounts for entrance and exit losses), and V is the channel average velocity.   

For laminar flow situations, the friction factor, f, is given by 

C
f

Re
  (laminar flow)        (53) 

where C is given for several different channel geometries in Table 8.1 from Fundamentals of 

Heat and Mass Transfer by F. P. Incropera and D. P. DeWitt (see above) and, for turbulent 

flows in smooth channels, it can be approximated with reasonable accuracy with the Blasius 

equation, 

0.25

0.3164
f

Re
  (turbulent flow in a smooth channel)     (54) 

Well, the above development essentially completes the model for the case of natural convection 

flow.  Since we cannot write a simple explicit expression for bm f (T ) , we will need to 

implement the model using an iterative scheme, as follows: 

1. Guess a channel mass flow rate, m . 

2. With m  known, compute an average value for the channel coolant temperature, where 
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ave

H

b b
0

1
T T (z)dz

H
           (55) 

and using Tb(z) from eqn. (35), we have 

 
ave

e e

plate e e e
b in

p

e e

H H (H )
cos sin sin

P H H H H H
T T

mc (H )
cos cos

H H

          
       
        

       
    

     

   (56) 

3. Using this average temperature and the pool temperature, compute the average fluid densities 

in the channel and pool via eqn. (45) and the average change in fluid density using  

ave avepool b pool b(T ) (T )              (57) 

4. Now, using eqns. (51)-(54) and the above supporting discussion, as appropriate, compute the 

average velocity in the coolant channel and a new mass flow rate based on this average 

velocity. 

5. Compare the mass flow rate guess from Step #1 and the computed m  from Step #4.  If these 

agree within some specified tolerance, then the iterative scheme is complete, the correct m  

that balances the buoyancy forces and friction forces is known, and Tb(z) can be computed 

from eqn. (35) (using the same approach as for forced flow with known m ).  At this point, 

one can continue with any additional analyses that may be needed.   

If, however, the two mass flow rates differ by an amount greater than the desired accuracy, 

then the iterative scheme has not yet converged, and one must make another guess for m and 

go back to Step #1.  Note that there are a number of options here for automating the next 

guess for m .  For example, if we denote k as the iteration counter, then one option is simply 

to define the guess for iteration k+1 as the computed value of m  for the current step (i.e. for 

iteration k).   

UMLRR Operational and Design Data 

The above development presents a mathematical model for finding the axial profiles for the 

coolant and plate surface temperatures within a standard fuel element in the UMass-Lowell 

research reactor (UMLRR).  The model accounts for both forced and natural convection flows, 

with the nonlinear nature of the natural convection model requiring an iterative solution 

algorithm.  The model development given here is applicable to any plate-type fuel assembly with 

a number of parallel plates and an axial power profile that can be approximated as a simple 

chopped sinusoid.  Our current interest, of course, is the application of this mathematical model 

to the UMLRR and a set of UMLRR-specific operational and design data are included below to 

support the implementation of the theoretical development.  These data can be used along with 

the above model to obtain explicit results (i.e., axial profiles for Tb, Tc, Ts, and Tm) for the 

UMLRR under a variety of operational conditions. 
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UMLRR Plate and Channel Geometry Information (also see Fig. 4): 

 a = 0.0255 cm  half thickness of uranium silicide fuel meat (0.0510/2 cm) 

 b = 0.038 cm  thickness of aluminum clad 

 w = 6.085 cm  width of fuel meat 

W = 6.604 cm  width of channel  

 H = 59.69 cm  active fuel height 

 L = 63.5 cm  length of coolant channel 

D = 2c = 0.2963 cm thickness of coolant channel 

 = 6 cm  estimate of axial reflector savings 

Nfp = 320  number of fuel plates (20 assemblies  16 plates per element) 

Nch = 378  # of coolant channels (21 assemblies  18 channels per element) 

Material Properties (water properties vs temperature are already given in above discussion) 

 kfuel = 15 W/m-K thermal conductivity of U3Si2-Al uranium silicide fuel 

 kclad = 180 W/m-K thermal conductivity of aluminum clad 

Operational Data: 

Tpool = Tin = variable pool and core inlet temperature (nominal value is about 20 C) 

K = 0.5 +    loss coefficients (sum of channel entrance and exit losses) 

2.0 laminar flow

1.05 turbulent flow


  


 kinetic energy correction factors 

R

1.0 average plate
F

1.45 hot plate


 


 radial peaking factors (adjusts average plate power) 

Ptot = variable  reactor power (up to 1 MW/100 kW in forced/free flow mode) 

ave

core

b

f (Q ) forced flow
m

f (T ) freeconvection


 


   channel mass flow rate 

Notes:   

1. For forced flow mode, the mass flow rate per channel is computed based on the total core 

volumetric flow rate, Qcore (nominal value of about 1650 gpm).  Previous work has shown 

that the current core configuration has about 72% of the total flow going through the fuel 

elements and, with Nch channels, the volume flow rate per channel is Qch = 0.72*Qcore/Nch.  

Then, the mass flow rate per channel is simply chm Q  . 

2. In natural convection mode, the channel mass flow rate is an implicit function of the channel 

average coolant temperature  --  and this relationship has already been described in detail in 

the above development. 
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3. The M-2-5 core arrangement has 21 total fuel assemblies  --  19 full fuel elements and 2 

partial fuel assemblies.  A partial assembly has the same physical appearance and dimensions 

as a full assembly, but each plate has half the fuel meat thickness (but the overall plate 

thickness is unchanged).  For the computation of the average power per plate, we use 20 

equivalent full fuel assemblies with 16 fuel plates per assembly.  However, to determine the 

coolant flow rate per channel, we use 21 assemblies times 18 channels per element (17 full 

interior channels between 18 plates and two half channels on the ends). 

4. Finally, since the methodology developed here assumes 1-D energy flow from the fuel to the 

coolant, the actual fuel meat thickness, w, is not used explicitly  --  instead, the full channel 

width, W, is used to compute both the average heat flux and the fluid flow area.  In contrast, 

the actual active fuel height, H, is used for representing the axial power profile, and the 

channel length, L, is used to compute the friction loss in the channel for the natural 

convection cases. 

Typical Results 

A Matlab program, sstemp_umlrr, was written to implement the above mathematical model, 

and a graphical user interface was created to allow the user to easily explore a number of 

variations (variable power level, flow rate in forced convection mode, inlet temperature, etc.).  

The Matlab GUI is called sstemp_umlrr_gui and a sample screen of the actual graphical user 

interface is shown in Fig. 8.  This specific screen shows a 200 kW natural convection case for the 

hot channel with a built-in radial peaking factor of 1.45 (note that a core power level of 200 kW 

is above the current licensed limit for natural convection operation of the UMLRR), where the 

available user options are given in the upper left portion of the screen, and the graphical and 

tabular results for the particular run are given in the right and lower left portions of the screen, 

respectively. 

Concerning a description/explanation of the code results, here we only briefly discuss the 

resultant axial temperature profiles for two nominal cases: 

Case 1:  Forced flow, average plate analysis, Pcore = 1000 kW, Qcore = 1650 gpm, Tin = 20 C, 

Sieder Tate correlation. 

Case 2:  Natural convection, average plate analysis, Pcore = 100 kW, Tin = 20 C, Sieder Tate 

correlation selected but not used because flow regime was laminar. 

The resultant profiles from the sstemp_umlrr code for the two cases are shown in Figs. 9 and 

10, respectively.  The nominal forced flow case, as seen in Fig. 9, has sufficient cooling (due to 

the relatively large flow rate) so that the coolant temperature rise along the average channel is 

less than 4 C, and the corresponding clad and fuel temperature profiles peak somewhat on the 

downstream side of core center (recall that the assumed axial power profile is symmetric around 

center).   For this situation, the clad and fuel profiles are dominated by the power distribution 

profile, with a slight tilt to account for the increasing bulk coolant temperature with increasing z. 

For the nominal natural convection case, as shown in Fig. 10, the coolant temperature rise along 

the channel is significantly larger, even though the core power level is only 100 kW (as 

compared to the 1000 kW power for Case 1).  The near 20 C increase, of course, is due to the 

much lower channel mass flow rate that develops in the natural convection case (due to the 

coolant density difference between the heated channel and the cooler pool coolant temperature).  

In this case, the clad and fuel temperature profiles are dominated by the axial coolant profile, and 
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only weakly affected by the axial power profile  --  thus, for the natural convection case, the 

shape of all the temperature profiles are quite similar. 

 

 

Fig. 8  Graphical user interface for the sstemp_umlrr_gui code. 

 

Summary 

Well, we have accomplished our original goal of developing an appropriate mathematical model 

and illustrating the typical axial temperature profiles that can be expected within the UMLRR 

fuel assembly geometry.  This documentation and the available GUI should serve as valuable 

educational tools  --  allowing the student the ability to explore alternate operational situations, 

and hopefully to obtain a good understanding of nuclear heat transport in plate-type geometries.   
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Fig. 9  Axial Temperature profiles for Case 1 (forced convection mode). 

 

 

Fig. 10  Axial Temperature profiles for Case 2 (natural convection mode). 


