
Mathematical Methods (10/24.539) 

IX.  The Sturm-Liouville Problem and Generalized Fourier Series 

Introduction 

The special functions discussed in the previous section are mostly special cases of a particular 
class of problems called Sturm-Liouville Problems or simply Eigenvalue Problems.  Most 
homogeneous 2-point Boundary Value Problems (BVPs) with homogeneous boundary 
conditions (BCs) fall into this classification.  The Sturm-Liouville problem is important because 
the solutions to a homogeneous BVP with homogeneous BCs produce a set of orthogonal 
functions  --  and we have seen that these are important for applications via Generalized Fourier 
Series.  Thus, this section of notes is designed to generalize some of the material from Section 
VIII on Special Functions and Orthogonality and to give the student a good introduction to the 
base terminology and solution techniques associated with classical eigenvalue problems 
(continuous 2nd order homogeneous BVPs with homogeneous boundary conditions) and the use 
of the resultant orthogonal functions within Generalized Fourier Series. 

The topics covered in this section are itemized below: 

Overview and General Terminology

Example 9.1  --  A Simple Eigenvalue/Eigenfunction Problem 

Example 9.2  --  Generalized Fourier Series Solution to BVPs 

Orthogonality of the Eigenfunctions

• The General Case 

• Example 9.1 Revisited 

• Legendre Polynomials 

• Ordinary Bessel Functions 

Example 9.3  --  Neutron Diffusion in a Nuclear Reactor (Bare Cylindrical Core) 
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Overview and General Terminology 

As outlined above, many of the special functions we have discussed previously represent specific 
cases of a more generalized Sturm-Liouville problem.  In particular, a 2-point boundary value 
problem having the form 

 [ ]d dr(x) y(x) q(x) p(x) y(x) 0
dx dx

⎡ ⎤ + + λ =⎢ ⎥⎣ ⎦
      (9.1) 

on some given interval, , with homogeneous boundary conditions given by a x b≤ ≤

          (9.2) 1 2

1 2

c y(a) c y '(a) 0

k y(b) k y '(b) 0

+ =

+ =

where c1, c2, and k1, k2 are constants, the p(x), q(x), and r(x) coefficients are differentiable 
functions of the independent variable (with p(x) > 0), and λ is a parameter, is called a Sturm-
Liouville Problem. 

Important Notes: 

1.  Homogeneous 2-point boundary value problems with homogeneous boundary conditions 
have an infinite number of solutions. 

2.  The values of that give non-trivial solutions are referred to as eigenvalues and the 
corresponding solutions, y

nλ

n(x), are eigenfunctions. 

3.  The set of eigenfunctions, {yn(x)}, form an orthogonal system with respect to the weight 
function, p(x), over the interval . a x b≤ ≤

4.  If p(x), q(x), and r(x) are real, the eigenvalues are also real (see any good text on Advanced 
Engineering Mathematics and Problem 11.24 in the Schaum’s Outline, Advanced Mathematics, 
for a general proof). 

It is the orthogonal eigenfunction solutions and their application within Generalized Fourier 
Series that make the Sturm-Liouville Problem so important. 

Example 9.1 represents a good illustration of the solution techniques utilized for typical 
eigenvalue problems and it identifies, via example, much of the terminology from above.  It is a 
simple demonstration that hopefully clarifies many of the basic concepts and notation associated 
with the so-called Sturm-Liouville Problem. 

Example 9.2 then expands upon the base terminology by illustrating how to solve some simple 
BVPs using a Generalized Fourier Series expansion.  It also emphasizes, once again, the 
important role that the endpoint conditions have in determining the completeness of the 
eigenfunctions in a particular application. 
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Example 9.1  --  A Simple Eigenvalue/Eigenfunction Problem 

Problem Description: 

Let’s illustrate many of the concepts and statements associated with typical eigenvalue problems 
with an example that demonstrates several important items: 

1.  Analytical technique for finding eigenvalues and eigenfunctions 

2.  Normalization of the eigenfunctions 

3.  Orthogonality of eigenfunctions for this particular case 

4.  Method for expanding arbitrary functions in sets of orthonormal eigenfunctions  --  an 
example of Generalized Fourier Series Eigenfunction expansions 

In particular, consider the following homogeneous equation with homogeneous boundary 
conditions (this just happens to represent the physics of a vibrating elastic string): 

  y '' y 0+ λ =

with 

  y(0) 0 and y(L) 0          = =

Problem Solution: 

I.  Show that this is a special case of a Sturm-Liouville Problem: 

We first let r .  With these substitutions, eqn. (9.1) becomes (x) p(x) 1 and q(x) 0  = = =

 [ ]d dr(x) y(x) q(x) p(x) y(x) 0
dx dx

⎡ ⎤ + + λ =⎢ ⎥⎣ ⎦
 

or 

 [ ]
2

2
d d d(1) y(x) (0) (1) y(x) y(x) y(x) 0

dx dx dx
⎡ ⎤ + + λ = + λ =⎢ ⎥⎣ ⎦

 

which is the desired ODE for this problem. 

Now with boundary points a = 0 and b = L, the coefficients in the general boundary condition 
equation [see eqn. (9.2)] become 

  1 2 1 2c 1, c 0 and k 1, k 0    = = = =

With these substitutions, the BCs in the general equation can be written simply as 

  y(0) 0 and y(L) 0          = =

which again are the desired conditions for this problem.  Thus, the current situation is indeed a 
special case of the general Sturm-Liouville problem. 
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II.  Find the eigenvalues and eigenfunctions for this problem: 

In trying to determine the solution to this problem, there are three possibilities  --  the 
eigenvalues might be negative, zero, or positive (note that, since the coefficient functions are 
real, we already know that the eigenvalues will be real).  Let’s try each possibility: 

Case 1  -  Negative Eigenvalues:  For this case we try 2λ = −ν .  With this substitution, the 
original ODE becomes 

  2y '' y 0− ν =

This is just a simple, constant coefficient, second-order ODE with characteristic equation 

  2 2r = ν

and roots 

  1,2r = ±ν

Thus, the general solution for the negative eigenvalue assumption is 

  x x
1 2y(x) A e A eν −= + ν

1

Applying the first boundary condition gives 

  1 2 2y(0) 0 A A or A A= = + = −

Similarly, the second boundary condition gives 

 ( )L L L L
1 2 1 1y(L) 0 A e A e A e e 2A sinh Lν −ν ν −ν= = + = − = ν  

Therefore, for real ν > 0, A1 = 0 and A2 = 0, and the only solution is the trivial solution, 
.  Thus, for this problem, letting λ be negative was not a good choice. y(x) 0=

Case 2  -  Zero Eigenvalues:  For this case we try 0λ = .  With this substitution, the original 
ODE reduces to .  This can be integrated twice to give y '' 0=

1 1y '(x) c and y(x) c x c= = 2+  

Applying the first boundary condition gives 

  1 2 2y(0) 0 c (0) c or c 0= = + =

Using the same logic, the second boundary condition gives 

  1 1y( ) 0 c L or c 0π = = × =

Therefore, as for Case 1, the only solution for the case of zero eigenvalues is the trivial solution, 
. y(x) 0=

Case 3  -  Positive Eigenvalues:  Since the first two choices did not lead to valid solutions, we 
should be hopeful for success for this third case.  As before, we try 2λ = +ν , and substitution 
into the original ODE gives 

Lecture Notes for Math Methods by Dr. John R. White, UMass-Lowell (updated Sept. 2004) 



Math Methods  --  Section IX:  The Sturm-Liouville Problem and Generalized Fourier Series 5

  2y '' y 0+ ν =

This time the characteristic equation is 

  2 2r = −ν

with roots 

  1,2r i= ± ν

With pure imaginary roots, the general solution can be written as 

  i x i x
1 2y(x) A e A eν −= + ν

ν

0

or, more commonly, one writes 

  1 2y(x) c cos x c sin x= ν +

Using this latter expression and the boundary condition at x = 0 gives 

  1 2 1y(0) 0 c 1 c 0 or c 0= = × + × =

Therefore, the general solution reduces to 

  2y(x) c sin x= ν

Now using the boundary condition at x = L gives 

  2y(L) 0 c sin L= = ν

For a nontrivial solution [i.e. ], we must require that sin2c ≠ L 0ν = .  Since we know that 
 for , we require that sin n 0π = n 0,1, 2,= L n for n 1, 2, 3,ν = π = , where n = 0 has been 

excluded since this leads to a trivial solution.  Thus we see that the second boundary condition 
leads to a constraint equation that defines specific values of λ  that give nontrivial solutions to 
the original ODE.  This constraint equation is often referred to as an eigencondition.  Note that 
there are an infinite number of suitable values for λ , since n can be any positive integer. 

Thus, the eigenvalues for this problem are n L for n 1, 2, 3,ν = π =  or, in terms of the 
parameter, λ, in the original equation, we have 2 2(n L) for n 1, 2, 3,λ = ν = π = .  Finally, the 
eigenfunction corresponding to the nth eigenvalue is simply 

ny (x) sin n x L= π  

Note that the c2 coefficient in the above general solution has been set to unity for convenience (at 
this point).  The second BC, instead of determining the second coefficient in the general solution, 
gave us the eigencondition that specifies the eigenvalues for this problem.  This situation leaves 
c2 undetermined.  However, because the original ODE is homogeneous, any arbitrary 
normalization could be used.  Here we choose the normalization to be unity  --  but later, when 
trying to define an orthonormal set of functions, a new normalization is determined (see below). 
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III.  Show that the eigenfunctions for this problem are orthogonal: 

For this problem, the definition of orthogonality requires the following equality for m n : ≠

 
L

0
sin(m x L)sin(n x L)dx 0π π∫ =

2

 

From a set of integral tables (for 2a b≠ ), we have 

 
1

1

0
0

x
x

x
x

1 sin(a b)x sin(a b)xsin(ax)sin(bx)dx
2 a b a b

− +⎡ ⎤= −⎢ ⎥− +⎣ ⎦∫  

and for our case, this becomes 

 
L

0

1 sin(m n) sin(m n)sin(m x L)sin(n x L)dx 0 0
2 (m n) L (m n) L

⎡ ⎤− π + π
π π = − − +⎢ ⎥− π + π⎣ ⎦

∫  

However,  for all integer p (including negative values).  Therefore, sin p 0π =

  sin(m n) 0 and sin(m n) 0− π = + π =

which proves the above expression. 

IV.  Find the set of normalized eigenfunctions [i.e. ng 1= ] for this problem: 

To completely define the orthogonality condition, one needs to determine the value of the above 
integral when m = n.  For the case of orthonormal eigenfunctions, the solutions to the original 
ODE are normalized to give a value of unity for this integral.  In particular, for the unnormalized 
eigenfunctions, sin n x Lπ , we have 

 
L

L 2
0

0

x sin 2n x L Lsin (n x L)dx
2 4n L

π
π = − =

π∫ 2
 

Therefore, if we let 

 n
2g (x) sin n x L
L

= π  

then an orthonormal set of eigenfunctions, gn(x), results.  This is shown explicitly by the 
normalization expression, 

 ( )
L2 2

n 0

2 2g sin n x L dx
L L

⎛ ⎞⎛ ⎞= π = ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠∫

L 1
2

=  

Clearly, for the normalized functions, the norm, ng , is unity (as designed). 

V.  Finally, as an example of using a Fourier series expansion, let’s expand a few simple 
functions, f(x), using the orthonormal basis functions defined above.  With the Fourier series, the 
function f(x) can be written as 

  n n
n 1

f (x) a g (x)
∞

=

= ∑
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Case 1:  The Constant Function 

For example, if f(x) is unity over the interval [0,L], we have 

 n
n 1

2f (x) 1 a sin n x L
L

∞

=

= = π∑  

where ng = 1, since the gn(x) have already been normalized. 

To find the expansion coefficients we multiply f(x) by m
2g (x) sin m x L
L

= π  and integrate 

over the domain of interest, giving 

( ) ( )
L L L

m n0 0 0
n 1

2 2f (x)g (x)dx 1 sin m x Ldx a 1 sin(m x L)sin(n x L)dx
L L

∞

=

⎛ ⎞= π = π π⎜ ⎟
⎝ ⎠

∑∫ ∫ ∫  

However, since the eigenfunctions are orthonormal functions, the RHS reduces to am because all 
the terms in the summation are zero except when n = m, and we have 

     
L

L L
m m0 0

0

2 2 cos m x L 2 1 cos ma f (x)g (x)dx sin m x Ldx
L L m L L m L m L

⎡ ⎤ ⎡ ⎤− π π
= = π = = −⎢ ⎥ ⎢π π ⎥π⎣ ⎦ ⎣

∫ ∫
⎦

 

But , therefore, ( )mcos m 1π = −

 ( )( )m
m

2 2L2 L m odda 1 1 L mL m
0 m even

    

                 

⎧
=⎪= − − = π⎨π ⎪ =⎩

 

and 

 
n

2 2L 2f (x) 1 sin n x L for n 1, 3, 5,
L n L

∞ ⎡ ⎤ ⎡ ⎤
= = π =⎢ ⎥ ⎢ ⎥π⎣ ⎦ ⎣ ⎦

∑  

or 

 
N

n

4 sin n x L1 for n
n
π

≈ =
π ∑ 1, 3, 5,  

Note also that this can be written as 

 ( )N

n

sin (2n 1) x L41 for
(2n 1)

− π
≈ =

π −∑ n 1, 2, 3,  

where now the indexing is simply incremented by unity and only the nonzero terms are included. 

The approximation given in the last expression has been written as a finite expansion, where N 
represents the number of terms used (this is often the number of nonzero terms).  This finite 
expansion is evaluated for several different N in the Matlab file eigenf1.m, and the partial sums 
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generated by these calculations are graphed in Fig. 9.1.  The eigenf1.m file is listed below in 
Table 9.1.   

This particular evaluation of the Fourier series is not very elegant or efficient, but it is easy to see 
exactly how the computations are performed.  As the number of terms used in the expansion 
increases, we would expect to see better and better agreement with the desired function (a 
constant line at a numerical value of unity for this case).  This is the general trend that is 
observed in Fig. 9.1 in the center of the desired interval but, at the end points, this can never 
occur because all the expansion functions are identically zero at the interval boundary points.  
Thus, in this case, we can never have an exact representation over the entire interval, even with 
an infinite number of terms in the expansion.  

 

 
Fig. 9.1  Some partial sums for the Fourier series for constant f(x). 

 

Table 9.1  Listing of Matlab file eigenf1.m. 

% 
%   EIGENF1.M   Demo of Fourier Series Representation for f(x) = 1 
% 
%   The goal here is to evaluate the infinite series expansion for  
%   f(x) = 1 in terms of sinusoids (i.e. a Fourier series expansion) 
% 
%   For this problem, the coefficients and basis functions are (see notes): 
%      an = (4/pi)/m         gn(x) = sin(m*pi*x/L)           
%   with m = (2n-1)   and n = 1, 2, ... 
% 
%   Note:  This implementation is not very efficient or elegant, but it  
%   is fairly straightforward.  A related example, EIGENF2.M, gives a more 
%   efficient set of coding for evaluating infinite series.  
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003)) 
% 
 
% 
%   getting started 
      clear all, close all, nfig = 0; 
% 
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%   set x domain and some constants 
      L = 3;   x = linspace(0,L,201);    c = 4/pi; 
% 
%   calc 1st partial sum  
      s1 = c*sin(pi*x/L); 
% 
%   calc 5th partial sum  
      s5 = s1; 
      for n = 2:5 
        m = 2*n-1;   s5 = s5 + (c/m)*sin(m*pi*x/L); 
      end 
% 
%   calc 20th partial sum  
      s20 = s5; 
      for n = 6:20 
        m = 2*n-1;   s20 = s20 + (c/m)*sin(m*pi*x/L); 
      end 
% 
%   calc 50th partial sum  
      s50 = s20; 
      for n = 21:50 
        m = 2*n-1;   s50 = s50 + (c/m)*sin(m*pi*x/L); 
      end 
% 
%   plot curves 
      nfig = nfig+1;  figure(nfig) 
      subplot(2,1,1),plot(x,s1,'g-',x,s5,'r--','LineWidth',2),grid 
      title('Eigen1:  Truncated Fourier Series Approx to f(x) = 1') 
      ylabel('Approx f(x)') 
      legend('1st Partial Sum','5th Partial Sum') 
% 
      subplot(2,1,2),plot(x,s20,'g-',x,s50,'r--','LineWidth',2),grid 
      xlabel('x-values'),ylabel('Approx f(x)') 
      legend('20th Partial Sum','50th Partial Sum') 
% 
%   end of demo 

 

Case 2:  The Quadratic Function 

As another example, let’s assume that f(x) varies quadratically over the interval [0,L] with zero 
endpoint values.  In particular, letting f (x) x(L x)= − , we have 

 n
n 1

2f (x) x(L x) a sin n x L
L

∞

=

= − = π∑  

where again ng = 1, since the gn(x) have already been normalized. 

As before, to find the expansion coefficients we multiply f(x) by gm(x), integrate over the domain 
of interest, and use the fact that the eigenfunctions are orthonormal to give 

L L
m m0 0

L L 2
0 0

L

2
0

L2

2 3
0

2a f (x)g (x)dx x(L x)sin m x Ldx
L

2 2L x sin m x Ldx x sin m x Ldx
L L

2 1 1L sin m x L x cos m x L
L m L(m L)

2 2x 2 xsin m x L cos m x L cos m x L
L m(m L) (m L)

= = − π

= π − π

⎡ ⎤⎛ ⎞
= π − π⎢ ⎥⎜ ⎟ππ⎝ ⎠⎣ ⎦

⎡ ⎤
− π + π −⎢ ⎥ππ π⎣ ⎦

∫ ∫

∫ ∫

L
π
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Using the equalities that sin  and  for integer m, evaluation of the above 
expressions at the endpoints gives 

m 0π = ( )mcos m 1π = −

 

( ) ( ) ( )

( ) ( )( ) ( )

2
m m m

m 3 3

3 3 3
m m m

3

3

3

2 L 2 L 2a L 1 1 1
L m L m L(m L) (m L)

2 L 2L L1 1 1 1
L m m(m )

2 4L m odd
L (m )

0 m even

    

                 

⎡ ⎤⎛ ⎞⎛ ⎞
= − − − − − − −⎢ ⎥⎜ ⎟⎜ ⎟π ππ π⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
= − − + − − + −⎢ ⎥π ππ⎣ ⎦

⎧
=⎪= π⎨

⎪ =⎩

 

Finally, the finite Fourier series representation can be written as 

 ( )2 N

3 3
n

sin (2n 1) x L8Lf (x) x(L x) for n 1, 2, 3,
(2n 1)

− π
= − ≈ =

π −∑  

where the indexing properly treats only the nonzero coefficients. 

As before, the approximation given in the last expression has been written as a finite expansion, 
where N represents the number of nonzero terms used.  This finite expansion is evaluated in the 
Matlab file eigenf2.m, which is listed in Table 9.2.  The computational algorithm used here is a 
little more efficient than the one used for Case 1 (see eigenf1.m in Table 9.1 for comparison).  
Each new term is added to the previous partial sum and a check is made to determine if the 
additional term has a non-negligible effect on the running sum.  If it does, a new term is added 
and the process is continued up to some maximum number of terms.  If the relative contribution 
of the last term in the partial sum falls below some user set tolerance, the summing loop is 
stopped, and the final converged Fourier expansion is plotted against the exact function, f(x) (for 
comparison purposes). 

For the Case 2 quadratic relationship, f (x) x(L x)= − , 17 terms were needed for convergence to 
within a relative tolerance of 0.001, and the final converged expansion function after 17 terms is 
plotted in Fig. 9.2.  Note that, this time, the Fourier expansion agrees exactly with the desired 
f(x).  This was expected because the function endpoints and the eigenfunction endpoint are 
identical and, with enough terms in the convergent series, we expect to get an exact match.   

In summary, the two examples given here show the two most common situations that occur with 
Generalized Fourier Series expansions.  If the boundary points of the desired function match the 
eigenfunctions, then convergence over the whole domain is expected.  However, if the endpoint 
values do not match, complete convergence can never be achieved.  Also, concerning an 
algorithm for evaluating the series, the one illustrated in Table 9.2 for the Case 2 example is 
clearly the better method  --  since it only uses as many terms as necessary for the desired level 
of accuracy. 
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Fig. 9.2  The converged Fourier series for quadratic f(x). 

 

Table 9.2  Listing of Matlab file eigenf2.m. 

% 
%   EIGENF2.M   Demo of Fourier Series Representation for f(x) = x(L-x) 
% 
%   The goal here is to evaluate the infinite series expansion for  
%   f(x) = x(L-x) in terms of sinusoids (i.e. a Fourier series expansion) 
% 
%   For this problem, the coefficients and basis functions are (see notes): 
%      an = (8*L^2/pi^3)/m^3           gn(x) = sin(m*pi*x/L)           
%   with m = (2n-1)   and   n = 1, 2, ... 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all, close all 
% 
%   set x domain and some constants 
      L = 3;   Nx = 201;  x = linspace(0,L,Nx);   c = 8*L^2/pi^3; 
% 
%   calc exact function  
      fe = x.*(L - x); 
% 
%   calc Fourier Series approx 
      fa = zeros(size(x)); 
      Max = 100;   tol = 0.001;   mrerr = 1.0;   n = 0; 
      while mrerr > tol   &    n < Max 
        n = n+1;  m = 2*n-1;    
        ff = (c/m^3)*sin(m*pi*x/L);   fa = fa + ff; 
        i = find(fa);                    % finds indices of nonzero values of fa 
        mrerr = max(abs(ff(i)./fa(i)));  % compute max relative error 
      end 
% 
%   plot curves 
      plot(x,fe,'g-',x,fa,'r--','LineWidth',2),grid 
      title('Eigen2:  Accuracy of Truncated Fourier Series for f(x) = x(L-x)') 
      ylabel('f(x)'), xlabel('x value') 
      legend('Exact f(x)','Approx f(x)') 
      if n == Max,  gtext('not converged');  end 
      if n < Max,   gtext([num2str(n),' terms for convergence']);  end 
% 
%   end of demo 
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Example 9.2  --  Generalized Fourier Series Solution to BVPs 

Problem Description: 

Solve the following BVPs using a Fourier series and compare the resultant infinite series 
solutions to the exact solutions obtained via the methods of Section II. 

   Case 1:   with   y(0) = 0   and   y(L) = 0 y 4y 1′′ + =

   Case 2  with   y(0) = 0   and   y(L) = 0 y 4y x(L x)′′ + = −

Problem Solution: 

Method I:  Simple Solution as Linear Constant Coefficient ODEs 

First we note the each of these problems involve a simple linear ODE with constant coefficients.  
Thus, the methods reviewed in Section II are applicable and we can easily find the 
homogeneous, particular, and general solutions to each case.  Then, by applying the two explicit 
Dirichlet boundary conditions, we can obtain the unique solution to each problem.  The detailed 
steps involved in this process are given below: 

Case 1 

The characteristic equation for an assumed homogeneous solution of the form  is 

, with imaginary roots 

rx
hy e=

2r 4+ = 0 2i1,2r = ± .  This gives the homogeneous solution 

h 1 2y (x) A cos2x A sin 2x= +   

Now, for a particular solution, we assume p 3y (x) A=  and, upon substitution into the original 
ODE, we have 

      or     34A 1= 3
1A
4

=  

Thus, combining yh and yp gives the general solution 

 1 1 2
1y (x) A cos2x A sin 2x
4

= + +  

Now, applying the BCs, gives 

 1
1y(0) A 0
4

= + =      or     1
1A
4

= −  

 1 2
1y(L) A cos2L A sin 2L 0
4

= + + =  

or ( )2
1 1 1A sin 2L cos2L cos2L 1
4 4 4

= − + = −  

and, solving explicitly for A2 gives, 
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2
cos2L 1A
4sin 2L

−
=  

With a specified value of L, A1 and A2 are simple numbers, and we get an exact (i.e. unique) 
solution to the Case 1 BVP: 

 1
1 cos2L 1y (x) cos2x sin 2x
4 4sin 2L

−
= − + +

1
4

 

Case 2 

This problem, of course, has the same homogeneous solution as Case 1.  The particular solution 
is different, however, and it can be developed as follows.  Let yp(x) be a simple polynomial of 
the same form as the forcing function and all it derivatives, or 

 2
p 3 4y (x) A x A x A= + + 5  

 p 3 4y (x) 2A x A′ = +  

 p 3y (x) 2A′′ =  

Then, upon substitution into the defining ODE, we have 

  ( )2 2
3 3 4 52A 4 A x A x A Lx x+ + + = −

This gives three simple equations with the following solution: 

 3
1A
4

= − ,       4
LA
4

= ,       and       3
5

2A 1A
4 8

= − =  

Thus, the general solution to the Case 2 problem becomes 

 2
2 1 2

1 L 1y (x) A cos2x A sin 2x x x
8 4 4

= + + + −  

Now, applying the BCs for this problem gives 

 1
1y(0) A 0
8

= + =      or     1
1A
8

= −  

 
2 2

1 2
1 L Ly(L) A cos2L A sin 2L 0
8 4 4

= + + + − =  

which gives 

 
( )

2

1 cos2L 1 cos2L 18A
sin 2L 8sin 2L

− −
= =  

And, upon evaluation and substitution into the general solution, we have the exact solution to the 
Case2 BVP: 

2
2

1 cos2L 1 1 Ly (x) cos2x sin 2x x x
8 8sin 2L 8 4

−
= − + + + −

1
4
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Method II:  Solution using Generalized Fourier Series 

Recall that Example 9.1 involved an eigenvalue problem of the form 

 y y   with     y(0) = 0   and   y(L) = 0 0′′ + λ =

and that the normalized eigenfunctions were given by 

 n
2y (x) sin n x L
L

= π  

Since the BCs for the BVPs of interest here are identical to those from Example 9.1, it makes 
sense to expect that a solution of the form 

 n n n
n n

2y(x) b y (x) b sin n x L
L

= =∑ ∑ π  

may be appropriate. 

Now, to actually solve the ODE, we make this assumption and expand the RHS forcing function 
in terms of a Fourier series.  For the two forcing functions of interest here, we have the following 
relationships (see Example 9.1): 

 
n

4 sin n x L1 for n
n
π

= =
π ∑ 1, 3, 5,  

 
2

3 3
n

8L sin n x Lx(L x) for n 1, 3, 5,
n
π

− = =
π ∑  

Now, substituting these relationships into the ODE for each case should allow us to determine 
the bn specific to each case of interest here. Let’s do this explicitly for each problem, where we 
note that, by differentiation term by term, we have 

 n
n

2y(x) b sin n x L
L

= π∑  

 n
n

2 ny (x) b cos n x L
L L

π⎛ ⎞′ = π⎜ ⎟
⎝ ⎠

∑  

and 

 
2

n
n

2 ny (x) b sin n x L
L L

π⎛ ⎞′′ = − π⎜ ⎟
⎝ ⎠

∑  

Case 1 

Now, making explicit substitutions into y 4y 1′′ + = , we have 

     
2

n n
n n n

2 n 2 4 1b sin n x L 4 b sin n x L sin n x L for n 1, 3, 5,
L L L n

π⎛ ⎞− π + π = π =⎜ ⎟ π⎝ ⎠
∑ ∑ ∑  
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And, equating the coefficients of like terms gives 
2

n
2 2 n 4 1 2L 2 24 b
L L L n L L

⎛ ⎞π⎛ ⎞− = =⎜ ⎟⎜ ⎟⎜ ⎟ π π⎝ ⎠⎝ ⎠

1
n

 

or 

( )n 2
2L 2 1 nb for n 1, 3, 5,

L 4 n L
= =

π − π
 

where we note that, since the RHS is zero for even n, the bn are also zero for even n. 

Thus, we can write the Fourier series solution for the Case 1 BVP as 

( )1 2
n

2L 2 1 n 2y (x) sin n x L for n 1, 3, 5,
L L4 n L

= π
π − π

∑ =  

or 

( )1 2
n

4 1 ny (x) sin n x L for n 1, 3, 5,
4 n L

= π
π − π

∑ =  

where, as before, we will replace n with 2n-1 during actual implementation to allow the use of 
all the positive integers, .  n 1, 2, 3,=

Case 2 

Now making explicit substitutions into y 4y x(L x)′′ + = − , we have 

  
2 2

n n 3 3
n n n

2 n 2 8L 1b sin n x L 4 b sin n x L sin n x L for n 1, 3, 5,
L L L n

π⎛ ⎞− π + π = π =⎜ ⎟ π⎝ ⎠
∑ ∑ ∑  

which gives  
2 2 3

n 3 3 3 3
2 2 n 8L 1 4L 2 24 b
L L L L Ln n

⎛ ⎞π⎛ ⎞− = =⎜ ⎟⎜ ⎟⎜ ⎟ π π⎝ ⎠⎝ ⎠

1  

or 

( )

3

3 3

n 2

4L 2 1
L nb for n 1, 3, 5,

4 n L
π= =
− π

 

where again, since the RHS is zero for even n, the bn are also zero for even n.   

Thus, we can write the Fourier series solution for the Case 2 BVP as 

( )

3

3 3

2 2
n

4L 2 1
2L ny (x) sin n L for n 1, 3, 5,
L4 n L

π= π
− π

∑ =  
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or 

( )

2 3

2 3 2
n

8L 1 ny (x) sin n L for n 1, 3, 5,
4 n L

= π
π − π

∑ =  

Evaluation and Comparison of the Methods 

The resultant mathematical expressions for y1(x) and y2(x) for the two methods used here are 
quite different.  A relatively simple analytical expression in terms of sines, cosines, and 
polynomial functions resulted from the traditional analytical solution method for constant 
coefficient ODEs.  In contrast, the generalized Fourier series approach gives a solution in the 
form of an infinite series where, in this case, a simple sine function was used as the basis 
functions in the eigenfunction expansion.  However, it is not at all obvious that the solutions for 
the two methods are equivalent, and the actual shapes of the Case 1 and Case 2 solutions, y1(x) 
and y2(x), are not readily apparent  --  especially for the Fourier series solution methodology. 

To show that the methods give identical results and to observe the actual functional behavior 
over the interval of interest, the above solutions were implemented, evaluated, and plotted using 
Matlab.  In particular, the Case 1 solutions are compared in m-file eigenf3.m and the Case 2 
results are evaluated in script file eigenf4.m.  These files are listed in Tables 9.3 and 9.4 and the 
summary plots for Case 1 and Case 2 are shown in Figs. 9.3 and 9.4, respectively.   

The actual Matlab programs are quite straightforward, with the evaluation of the Fourier series 
following the same algorithm as implemented previously in Example 9.1 (see the eigenf2.m file 
in Table 9.2).  The first observation to make from the plots is that the truncated Fourier series 
solution method gives an approximate solution that is essentially exact for both cases (i.e. the 
two curves in Figs. 9.3 and 9.4 overlap).  This, however, is consistent with expectations since, in 
both cases, the boundary values for y1(x) and y2(x) correspond exactly with the chosen basis 
functions within the generalized Fourier series.  Thus, as we saw in Example 9.1, if the boundary 
values from the solution to the BVP match the endpoint values for the eigenfunctions, then 
convergence over the whole domain is expected. 

 

   
       Fig. 9.3  Solutions for the Case 1 BVP.              Fig. 9.4  Solutions for the Case 2 BVP. 
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Note, however, that even though convergence was achieved in both cases, the Case 1 solution 
required significantly more terms in the expansion (51 terms for the Case 1 BVP and only 5 
terms for the Case 2 solution).  This behavior is associated with the eigenfunction representation 
of the RHS forcing function within the ODE of interest.  In Example 9.1, we have seen that the 
Fourier series representation of f2(x) = x(L – x) is essentially exact, but that the expansion of 
f1(x) = 1 can never converge over the whole domain.  Thus, when solving the inhomogeneous 
BVP, the nature of the RHS source can certainly affect the rate of convergence of the Fourier 
series for the solution  --  that is, if it takes many terms to get a good representation of the RHS 
forcing function, then the series solution for y(x) may also need many terms.  Note, however, 
that completeness of the RHS function, f(x), is not a requirement for completeness of the Fourier 
series for the solution, y(x), to the BVP  --  it is the consistency of the BCs on y(x) and the 
endpoint conditions associated with the eigenfunctions that is important here.  Thus, in this 
example, since the chosen eigenfunctions satisfy the BCs for both BVPs, convergence to the 
exact solution was indeed expected for both cases.  The convergence behavior of the Fourier 
series for the forcing function, f(x), can certainly affect the observed rate of convergence of y(x), 
but it is the actual BCs that influence whether or not complete convergence should be expected. 

 

 

Table 9.3  Listing of Matlab file eignf3.m  (Example 9.2 Case 1). 

% 
%   EIGENF3.M   Demo for using Fourier Series for solving BVPs 
% 
%   The goal here is to use Fourier Series to solve the simple BVP given by 
%        y'' + 4y = 1   with   y(0) = 0   and   y(L) = 0 
%   and to compare the approximate series solution with the exact solution (see 
%   Case 1 in Example 9.2 in the Math Method Notes for details). 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all, close all 
% 
%   set x domain  
      L = 3;   Nx = 201;  x = linspace(0,L,Nx);    
% 
%   calc exact solution  
      ce = (cos(2*L)-1)/(4*sin(2*L)); 
      ye = -(1/4)*cos(2*x) + ce*sin(2*x) + 1/4; 
% 
%   calc Fourier Series approx to y(x) 
      c = 4/pi;   ya = zeros(size(x)); 
      Max = 100;   tol = 0.001;   mrerr = 1.0;   n = 0; 
      while mrerr > tol   &    n < Max 
        n = n+1;  m = 2*n-1;    
        ff = (c/m)/(4-(m*pi/L)^2)*sin(m*pi*x/L);   ya = ya + ff; 
        i = find(ya);                    % finds indices of nonzero values of fa 
        mrerr = max(abs(ff(i)./ya(i)));  % compute max relative error 
      end 
% 
%   plot curves 
      plot(x,ye,'g-',x,ya,'r--','LineWidth',2),grid 
      title('Eigen3:  Accuracy of Fourier Series for the Case 1 BVP from Ex. 9.2') 
      ylabel('y_1(x)'), xlabel('x value') 
      legend('Exact y_1(x)','Approx y_1(x)') 
      if n == Max,  gtext('not converged');  end 
      if n < Max,   gtext([num2str(n),' terms for convergence']);  end 
% 
%   end of demo 
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Table 9.4  Listing of Matlab file eigenf4.m  (Example 9.2 Case 2). 

% 
%   EIGENF4.M   Demo for using Fourier Series for solving BVPs 
% 
%   The goal here is to use Fourier Series to solve the simple BVP given by 
%        y'' + 4y = x(L-x)   with   y(0) = 0   and   y(L) = 0 
%   and to compare the approximate series solution with the exact solution (see 
%   Case 2 in Example 9.2 in the Math Method Notes for details). 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all, close all 
% 
%   set x domain  
      L = 3;   Nx = 201;  x = linspace(0,L,Nx);    
% 
%   calc exact solution  
      ce = (cos(2*L)-1)/(8*sin(2*L)); 
      ye = -(1/8)*cos(2*x) + ce*sin(2*x) + 1/8 + (L/4)*x -(1/4)*x.*x; 
% 
%   calc Fourier Series approx to y(x) 
      c = 8*L^2/pi^3;   ya = zeros(size(x)); 
      Max = 100;   tol = 0.001;   mrerr = 1.0;   n = 0; 
      while mrerr > tol   &    n < Max 
        n = n+1;  m = 2*n-1;    
        ff = (c/m^3)/(4-(m*pi/L)^2)*sin(m*pi*x/L);   ya = ya + ff; 
        i = find(ya);                    % finds indices of nonzero values of fa 
        mrerr = max(abs(ff(i)./ya(i)));  % compute max relative error 
      end 
% 
%   plot curves 
      plot(x,ye,'g-',x,ya,'r--','LineWidth',2),grid 
      title('Eigen4:  Accuracy of Fourier Series for the Case 2 BVP from Ex. 9.2') 
      ylabel('y_2(x)'), xlabel('x value') 
      legend('Exact y_2(x)','Approx y_2(x)') 
      if n == Max,  gtext('not converged');  end 
      if n < Max,   gtext([num2str(n),' terms for convergence']);  end 
% 
%   end of demo 
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Orthogonality of the Eigenfunctions 

The General Case 

We have stated that the eigenfunctions of the Sturm-Liouville problem are orthogonal and, in 
Example 9.1, we have shown this property for a particular situation.  However, since 
orthogonality is such an important property, it is important to examine its development for the 
general Sturm-Liouville problem.  Thus, the present subsection treats the general case and much 
of the remainder of this section shows how Example 9.1, the Legendre polynomials, and the 
ordinary Bessel functions fit into the general development.  These three specific illustrations 
cover the most common situations that occur in practical applications. 

To start the proof of orthogonality for the general case, we simply rewrite the general Sturm-
Liouville problem [see eqns. (9.1) and (9.2)] using a shorthand notation, or 

[ry ']' [q p]y 0+ + λ =  

with boundary conditions 

  1 2

1 2

c y(a) c y '(a) 0
k y(b) k y '(b) 0

+ =
+ =

We now let ym(x) and yn(x) be eigenfunctions for two different eigenvalues,  and  (i.e. 
).  Then the defining equations for y

mλ nλ
m n≠ m(x) and yn(x) are: 

         (9.3) m m m[ry ']' [q p]y 0+ + λ =

         (9.4) n n n[ry ']' [q p]y 0+ + λ =

Multiplying eqn. (9.3) by yn and eqn. (9.4) by ym and subtracting the resultant expressions give 

  n m m n m n m ny [ry ']' y [ry ']' ( )py y 0− + λ − λ =

']'

n

or 

m n m n m n n m( )py y y [ry ']' y [ryλ − λ = −       (9.5) 

The right hand side (RHS) of eqn. (9.5) can be written as 

       (9.6) n m m nRHS of eqn. (9.5) [(ry ')y (ry ')y ]'= −

One can show this latter relationship by performing the indicated operations, or 

  n m m n n m n m m n m[(ry ')y (ry ')y ]' (ry ')y ' [ry ']' y (ry ')y ' [ry ']' y− = + − −

and, since the first and third terms cancel, we are left with the expression in eqn. (9.6). 

Now, combining eqns. (9.5) and (9.6) and integrating over the interval a x b≤ ≤  gives 

[ ]
[

[ ]

b b
m n m n n m m n aa

n m m n

n m m n

( ) py y dx (ry ')y (ry ')y

r(b) y '(b)y (b) y '(b)y (b)

r(a) y '(a)y (a) y '(a)y (a)

λ − λ = −

= −

− −

∫
]     (9.7) 
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Since , for orthogonality, the right hand side of eqn. (9.7) must vanish.  Thus, we see 
that the boundary conditions usually play an important role in establishing orthogonality (as well 
as in defining the eigenfunctions originally).  Note that many different combinations for the BCs 
at the two boundary points, a and b, will force the RHS of eqn. (9.7) to zero.  However, for the 
special case of r(a) and r(b) both zero, the boundary conditions play no role in showing 
orthogonality  --  and, for this case, the solutions of the Sturm-Liouville problem are orthogonal 
independent of the boundary conditions imposed on the problem.  Also note that, in general, 
orthogonality is with respect to the weight function p(x).  These observations are very important  
--  and the student should have a good understanding of the development and use of the general 
orthogonality conditions implied in eqn. (9.7).  The following three cases illustrate its use to 
establish orthogonality for three different situations. 

mλ ≠ λn

=

]

Example 9.1 Revisited 

In Example 9.1, the ODE of interest was 

  y '' y 0 with y(0) 0 and y(L) 0          + λ = = =

This is a specific case of a general Sturm-Liouville problem with 

r(x) 1 q(x) 0 p(x) 1 and a 0 b L= = = =  

Using eqn. (9.7) to establish orthogonality gives 

[ ] [
L

m n n m m n n m m n0
y (x)y (x)dx (1) y '(L)y (L) y '(L)y (L) (1) y '(0)y (0) y '(0)y (0)= − − −∫  

and since the boundary conditions are y(0) = 0 and y(L) 0= , every term on the right hand side 

vanishes identically.  Therefore, 
L

m n0
y y dx 0=∫ , as shown previously for Example 9.1. 

Legendre Polynomials 

Recall that Legendre’s equation was written as 

  2
n n n(1 x )y '' 2xy ' n(n 1)y 0− − + + =

+

but this is equivalent to 

  2
n n n n[(1 x )y ']' y 0 where n(n 1)− + λ = λ =

Therefore, this is a Sturm-Liouville problem with 

  2r(x) (1 x ) q(x) 0 and p(x) 1= − = =

Also we note that the range of interest here is a x b≤ ≤  with a = -1 and b = 1 and that 

  r(a) r( 1) 0 and r(b) r(1) 0= − = = =

Equation (9.7) shows that the solutions to Legendre’s equation are indeed orthogonal and that no 
specific boundary conditions are needed to force orthogonality [since r(a) and r(b) are already 
both zero]. 
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Ordinary Bessel Functions 

The ordinary Bessel equation is given as 

  2 2 2 2x y '' xy ' ( x )y 0+ + α − ν =

but this is equivalent to (dividing by x) 

 
2

2[xy ']' x y 0 where
x

⎛ ⎞−ν
+ λ + = λ = α⎜ ⎟

⎝ ⎠
 

Therefore, this is a Sturm-Liouville problem with 
2

r(x) x q(x) and p(x) x
x

−ν
= = =  

Thus, orthogonality will be with respect to the weight function p(x) = x and the boundary 
conditions must be such that the right hand side of eqn. (9.7) vanishes. 

To elaborate a little, let’s limit our discussion to integer order Bessel functions, or let  
(this is the usual case).  Then the eigenvalues, 

nν →
2

mn mnλ = α , represent the infinite number of values 
of  for  for the ordinary Bessel functions of order n that satisfies the specific 
boundary conditions for a given problem. 

mnλ m 1, 2,=

Writing , we see that eqn. (9.7), for this case, becomes n mny(x) J ( x)= α

[ ]
[ ]

b2 2
mn kn n mn n kna

n kn n mn n mn n kn

n kn n mn n mn n kn

( ) xJ ( x)J ( x)dx

b J '( b)J ( b) J '( b)J ( b)

a J '( a)J ( a) J '( a)J ( a)

α − α α α =

α α − α α

− α α − α α

∫
 

Clearly, since both boundary points, a and b, cannot be zero, orthogonality can only be specified 
by appropriate boundary conditions on the problem.  As shown below in Example 9.3, the 
specific values of  that satisfy these conditions are the eigenvalues of the problem and 
they are related to the zeros of the J

2
mn mnλ = α

n(x) function  --  that is, mnα  is interpreted as the mth value of 
x such that Jn(x) = 0.  The reader should see the previous discussion on Bessel functions in 
Section VIII for more information [for example, one should recall that Jn(x) has an infinite 
number of zeros, etc,].  Also, one should study Example 9.3 in detail as a specific application 
that illustrates orthogonality for the ordinary Bessel functions. 
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Example 9.3  --  Neutron Diffusion in a Nuclear Reactor 

Problem Description: 

Determine the 1-group neutron flux distribution in an infinitely long homogeneous bare critical 
cylindrical reactor.  Also show that the resultant eigenfunctions for this problem are orthogonal 
and find the norm of these orthogonal eigenfunctions. 

Problem Solution: 

Background 

This example is from basic Nuclear Reactor Theory.  In a nuclear reactor, 235U fissions by 
neutron bombardment and recoverable energy to drive a steam power plant is released.  Neutrons 
are also released in the fission process, and these are used to initiate additional fission reactions.  
For steady state operation, the parasitic neutron losses in the system and the neutron absorption 
in the uranium fuel are balanced exactly by the neutron production rate from fission.  Since it is 
the neutron distribution that determines the various interaction rates and the energy production 
rate, it becomes important when designing and operating a nuclear reactor to determine the 
neutron population throughout the system.  One must solve a second order differential balance 
equation to obtain the desired neutron density or flux distribution.  The simplest form of the 
neutron balance equation is the so-called Neutron Diffusion Equation. 

One of the steady state critical ideal reactor geometries that can be treated via analytical means is 
a long bare cylindrical core model, as illustrated in Fig. 9.5.  All the adjectives used to describe 
the system are needed to reduce the general, very complicated, particle balance equation into a 
form that can be treated analytically.  For example, the phrase, steady state critical, indicates that 
the neutron population is constant in time and that the reaction is self-sustaining (i.e. the 
neutrons given off in the fission process are balanced perfectly so that they cause the same 
number of fissions in each generation, which produces the same number of new neutrons, and 
keeps the total neutron population constant  --  on the average).  The term bare reactor means 
that the fueled core region is surrounded by a vacuum, giving an outer boundary condition of 
zero flux (the neutron flux is a measure of the neutron population).  The long homogeneous 
description implies that the axial height is large relative to the radius and that the material 
properties are constant throughout the system.  These conditions suggest that the variation of the 
neutron density in the axial and azimuthal directions is negligible, leaving a functional 
dependence on only one variable, or (r, ,z) (r)φ θ ⇒ φ , where φ  is the symbol used to represent 
the neutron flux.  Also, symmetry in the system suggests that the neutron population will be the 
largest in the center of the reactor, which implies that the flux gradient is zero at r = 0. 

The Neutron Flux Distribution 

With all the above conditions and simplifications, the Neutron Diffusion Equation for a one 
energy group (assumes all the neutrons have the same average energy) bare critical reactor 
model becomes 

  2 2B 0∇ φ + φ =

where the  or Laplacian operator for 1-D cylindrical geometry is given by 2∇
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Fig. 9.5  Basic geometry for the cylindrical bare critical reactor in Example 9.3. 

 

2 1 d dr
r dr dr

⎛ ⎞∇ = ⎜ ⎟
⎝ ⎠

 

and B2 is a constant that is related to material properties of the homogenous system. 

Therefore, the particle balance equation for the 1-g 1-D neutron flux distribution is 

21 d dr B
r dr dr

φ⎛ ⎞ + φ =⎜ ⎟
⎝ ⎠

0  

with boundary conditions as shown in Fig. 9.5, or 

 
r 0

dat r 0, 0 and at r R, (R) 0
dr =

φ
= = = φ =

=

 

In mathematical terms, this system is a 2nd order homogeneous ODE with homogeneous 
boundary conditions.  From our recent discussions, we recognize this as an eigenvalue or Sturm-
Liouville problem! 

To avoid any confusion with the above notation, let’s first convert this system into a standard 
Sturm-Liouville problem, using the notation from previous sections.  In particular, if we let 

, then, after multiplication by r, the balance equation becomes 2r x, y, and B⇒ φ ⇒ λ =

[xy ']' xy 0+ λ =  

This is clearly a Sturm-Liouville problem with 

  r(x) x q(x) 0 and p(x) x= =

and boundary conditions 

  y '(0) 0 and y(R) 0= =

We should also recognize this as an ordinary Bessel equation with 0ν = .  This can be seen more 
easily by rewriting the balance equation as 
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  2 2x y '' xy ' ( x 0)y 0+ + λ − =

Therefore, the general solution for this problem can be written as 

 ( )1 0 2 0y(x) A J x A Y ( x)= λ + λ

0
0 0

 

or 

  1 0 2 0y(x) A J (Bx) A Y (Bx)= +

Also, we can compute the gradient, , as y '(x)

1 1 2 1y '(x) A BJ (Bx) A BY (Bx)= − −  

where the standard derivative formulas for the ordinary Bessel functions have been used, or 

  0 1 0 1J '(Bx) BJ (Bx) and Y '(Bx) BY (Bx)= − = −

As usual, we now apply the boundary conditions to the general solution.  At r = x = 0, we have 

1 2y '(0) 0 A B (0) A B ( )= = − × − × −∞  

where we have used the facts that J1(x) approaches zero as  and Yx → 1(x) approaches negative 
infinity as .  Thus, the only way to satisfy this condition is to let .  Thus, after 
applying only the symmetry condition, the solution profile reduces to 

x → 2A =

1 0y(x) A J (Bx)=  

Now, applying the boundary condition at x = R gives 

  1 0y(R) 0 A J (BR)= =

Since A1= 0 would give a trivial solution, we must let 0J (BR) 0=  to satisfy this condition.  
However, Jn(x) is an oscillatory function and it has an infinite number of zeros, which we will 
denote as  for m   --  that is, mnα 1, 2,= mnα  represents values of x for which . nJ (x) 0=

Therefore, from the above discussion, we have 

0 0 m0J (BR) J ( ) 0= α =  

as the eigencondition for this problem.  This leads to 

m0
mB

R
α

=  

as the allowed eigenvalues (really ) with 2
m Bλ = m m 1, 2,= . 

With the eigenvalues known [these can be approximated from a plot of J0(x) or, more accurately, 
from a root finding algorithm applied to J0(x)], the eigenfunctions are simply 

m0
m m 0 m 0y (x) (x) J (B x) J x

R
α⎛ ⎞= φ = = ⎜ ⎟

⎝ ⎠
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Note that, for the real physical system, the neutron flux must be real and non-negative, and the 
only eigenfunction that is positive over the full domain, 0 r R≤ ≤ , is related to the fundamental 
mode (i.e. first eigenfunction).  Since the first zero of the J0(x) Bessel function occurs at x = 
2.4048, the real neutron flux distribution in the physical system is 

1 0
2.405(r) A J r

R
⎛ ⎞φ = ⎜ ⎟
⎝ ⎠

 

where A1 is a normalization that is usually determined from the overall power level of the 
reactor.  This latter expression is the desired solution to the first part of the problem description 
for Example 9.3 (see above). 

Orthogonality of the Eigenfunctions 

In addition to finding the physical neutron flux profile, from a mathematical viewpoint, it would 
also be nice to demonstrate that the eigenfunction solutions are indeed orthogonal functions with 
respect to the weight function p(x) = x.  If we take the general orthogonality relationship given in 
eqn. (9.7) for the general Sturm-Liouville problem and apply it to this problem, we have 

( ) ( ) ( ) ( ) [ ]

R R m0 n0
m n 0 00 0

0 n0 0 m0 0 m0 0 n0 0 0 0 0

xy y dx xJ x J x dx
R R

R J ' J J ' J 0 J '(0)J (0) J '(0)J (0)

α α⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= α α − α α − −⎡ ⎤⎣ ⎦

∫ ∫
 

The first term on the RHS of this expression vanishes because, by definition,  for 
, and the second term is zero for two reasons  --  because of the zero coefficient and 

because .  Therefore, since the full RHS vanishes, the ordinary Bessel 
functions are indeed orthogonal with respect to p(x) = x, or 

( )0 m0J 0α =
m 1, 2,=

0 1J '(0) BJ (0) 0= − =

R m0 n0
0 00

xJ x J x dx 0 for m n
R R

α α⎛ ⎞ ⎛ ⎞ = ≠⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  

Finally, let’s compute the normalization required when m n= .  In this case we need to evaluate 
the following integral: 

R2 2 m0
m 00

y xJ x dx
R

α⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ ?  

To accomplish this we first obtain from the literature the following integral relationship 
involving the square of the J0 Bessel function: 

2k 2
2k 1 2 2 2

k k
xx J (x)dx J (x) J (x)
4k 2

+
+

+⎡ ⎤= +⎣ ⎦+∫ k 1  

and, for k = 0, this becomes 
2

2 2
0 0

xxJ (x)dx J (x) J (x)
2

⎡ ⎤= +⎣ ⎦∫ 2
1  
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Now to evaluate the norm of the eigenfunction, we need to put the desired integral into this form.  
Therefore, we let 

m0 m0z x and dz
R R

α α
= = dx  

and substitution into the expression for the normalization gives 

 ( ) ( )

m0

m0

2
R2 2 2m0

m 0 00 0
m0

2 22 2
2 2 2 2m0
0 1 0 m0 1 m0

m0 m0
0

2
2
1 m0

Ry xJ x dx zJ (z)dz
R

R z RJ (z) J (z) J ( ) J ( )
2 2

R J ( )
2

α

α

⎛ ⎞α⎛ ⎞= = ⎜ ⎟⎜ ⎟ α⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞ α
= + = α +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢α α⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

= α

∫ ∫

⎤
α ⎥

⎦
 

where the last equality uses the fact that ( )0 m0J 0α = .  Thus, the desired eigenfunction 
normalization is given by 

2R2 2 2m0
m 0 10

Ry xJ x dx J (
R 2

α⎛ ⎞= =⎜ ⎟
⎝ ⎠∫ m0)α  

 

__________________________ 

This example completes our current study of the general Sturm-Liouville Problem.  You will 
find that these ideas, especially those related to orthogonality and generalized Fourier series, will 
be very useful in lots of applications.  They are also especially relevant for several techniques for 
solving PDEs.  Thus, we will revisit some of these concepts in the next section on PDEs 
(especially the section that deals with the analytical solution of PDEs using the Separation of 
Variables method). 
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