
 

Mathematical Methods (10/24.539) 

VIII.  Special Functions and Orthogonality 

Introduction 

If a particular differential equation (usually representing a linear variable coefficient system) and 
its power series solution occur frequently in applications, one gives them a name and introduces 
special symbols that define them.  The properties of the functions are studied and tabulated and 
this information becomes a resource that can be exploited by the practicing engineer. 

We have seen that linear constant coefficient systems have solutions that can be written in terms 
of elementary functions (sinusoids, exponentials, etc.).  These functions are called elementary 
because they are treated in detail in introductory algebra, trigonometry, and calculus courses and 
they are used routinely in a variety of engineering applications.  In short, since we are very 
familiar with these functions, they are easy to work with and we refer to them as elementary 
functions. 

In contrast, functions that we are not as familiar with are more difficult to use in applications (at 
least initially) and sometimes these are referred to as non-elementary functions, special 
functions, or transcendental functions.  We will use the special function designation to 
emphasize their special significance in a variety of engineering applications.  Also, once we gain 
a little experience with these special functions, we will no longer be imitated with their use and 
the non-elementary connotation will no longer be applicable (for example, using Bessel 
functions is as easy as using sinusoids, once you become comfortable with their use). 

The special feature of the so-called special functions is a property called orthogonality.  In this 
section of notes, we define this property, briefly identify several functions that share this special 
characteristic, and provide some additional details for two particular cases (for Legendre 
polynomials and Bessel functions).  A generalization is made to include a full class of problems 
that have orthogonal functions as their solution  -  known as Sturm-Liouville Problems  -  in the 
next section.  

The current section on special functions and the subject of orthogonality is subdivided as 
follows: 

Orthogonal Functions 

Summary of Several Special Functions 

• Legendre Polynomials 

• Associated Legendre Functions 

• Hermite Polynomials 

• Laguerre Polynomials 

• Bessel Functions 

The Gamma Function 
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Legendre’s Equation and Legendre Polynomials (in more detail) 

• Solution via the Power Series Method 

• Standard Form for Legendre Polynomials 

• Some Low-Order Legendre Polynomials 

• Some Important Relationships 

• The Matlab legendre Function 

• Application Notes 

Bessel’s Equation and Bessel Functions (in more detail) 

• Bessel’s Equation 

• One Solution via the Power Series Method 

• Linear Independence 

• Ordinary Bessel Functions of the Second Kind 

• Summary Expressions for Various Bessel Functions 

• Additional Properties and Relationships 

• Some Plots and Limiting Values 

Equations Solvable in Terms of Bessel Functions 

Some Analytical Examples using Bessel Functions 

• Example 8.1  -  Solve   y '' y 0+ =

• Example 8.2  -  Solve  ( ) ( )2 4 8 2x y '' x 4x 3 y ' 4x 5x 3 y 0+ − + − + =  

• Example 8.3  -  Analytical Solution to the Circular Fin Problem 
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Orthogonal Functions 

Two functions are said to be orthogonal if, when multiplied together and integrated over the 
domain of interest, the integral becomes zero.  The property of orthogonality is usually applied 
to a class of functions that differ by one or more variables (and usually represent the basis 
solutions to a homogeneous eigenvalue problem with an infinite number of eigenfunction 
solutions).  For example, we can represent a class of sinusoids as 

        (8.1) n (x) sin nx for n 1, 2, 3,ψ = =

where n is a positive integer.  A particular function might be f ( 2x) (x) sin 2x= ψ = .  For an 
arbitrary function belonging to this set, we simply refer to the discrete index n, where the nth 
function is denoted as ψ , or the mn (x) th function as m(x)ψ , etc..  

The orthogonality property can be stated mathematically as 

 
b 2

m n m n m mn 2a
m

0 m
g g g (x) g (x) dx g

g m

     

    

n

n

≠= = δ = 
=

∫     (8.2) 

where 

 2
m mg g norm of the function  = =       (8.3) 

and  is the Kronecker delta function that takes on the value of unity if m = n and a value of 
zero if m .  If 

mnδ

n≠ mg 1= , then gm(x) is said to be an orthonormal function. 

The orthogonality property is important because functions with this characteristic are often used 
to expand arbitrary functions with an infinite series expansion in terms of the given basis 
functions.  For example, the function f(x) can be written in terms of a Generalized Fourier 
Series (implies completeness), or 

          (8.4) n n
n 1

f (x) a g (x)
∞

=

= ∑

where the an are the expansion coefficients. 

The orthogonality property comes into play when one tries to determine an expression for the an 
coefficients.  To see this, we multiply eqn. (8.4) by the mth function, gm(x), and integrate over the 
domain of interest.  Doing this gives 

 2
m n m n n m mn

n 1 n 1
g (x)f (x) a g (x)g (x) a g a g

∞ ∞

= =

= = δ =∑ ∑ 2
m m    (8.5) 

or 

 m
m

m

g (x)f (x)
a

g
2=          (8.6) 
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where the summation symbol is eliminated in the last equality in eqn. (8.5) because 
orthogonality forces all the terms in the infinite sum to zero except for the single term where n = 
m.  This simplification is essential in many practical applications, and it would not be possible 
without the orthogonality property [as defined in eqn. (8.2)].  Thus we will see that this is a very 
important characteristic. 

The Generalized Fourier Series given in eqn. (8.4) is an eigenfunction expansion in terms of a 
complete set of orthogonal basis functions.  The choice of the basis functions is usually 
determined by the domain of interest and the boundary conditions imposed upon f(x).  The basis 
functions are usually obtained from a Sturm-Liouville Problem which results in a set of 
orthogonal eigenfunctions (see the next section for further details).  The term completeness 
implies that the Generalized Fourier Series converges as .  Although of theoretical 
interest, a rigorous proof of completeness is quite often unnecessary because the series is almost 
always truncated to low order in practical problems. 

n → ∞

Finally, we note that, in many cases, the basis functions may be orthogonal with respect to a 
weight function, p(x).  This means that 

 2
2m n m mn

m

0 m
p(x)g (x)g (x) g

g m

     

    

n

n

≠= δ = 
=

     (8.7) 

where the normalization is given by 

 2
mg pg= m          (8.8) 

For this case the basic series expansion relationship is unchanged [i.e. eqn. (8.4) is the same], but 
the expression for the expansion coefficients is modified accordingly to give 

m
m

m

p(x)g (x)f (x)
a

g
2=         (8.9) 
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Summary of Several Special Functions 

As indicated, there are a number of special functions that occur frequently in many different 
fields of application.  As a sample, a few of the more important functions and some of their 
properties are tabulated below.  Note that orthogonality is a common characteristic for these 
special functions. 

Legendre Polynomials 

Differential Equation  
(n is a non-negative integer) ( )21 x y '' 2xy ' n(n 1)y 0− − + + =  

Rodrique’s Formula ( )
n n2

n n n
1 dP (x) x 1

2 n! dx
 = −  

 

Generating Function n
n2

n 0

1 P (x)t
1 2xt t

∞

=

=
− +

∑  

Recurrence Relation n 1 n n 1(n 1)P (x) (2n 1)xP (x) nP (x)+ −+ = + −  

Orthogonality 
1

m n m1

2P (x)P (x) dx
2n 1− n= δ

+∫  

Associated Legendre Functions (for m = 0, these reduce to Legendre Polynomials) 

Differential Equation  
(n and m are non negative integers) ( ) ( )

2
2

2
m1 x y '' 2xy ' n n 1 y 0

1 x
 

− − + + − = − 
 

Rodrique’s Formula ( ) ( )
m m

mm 2 2
n nm

dP (x) 1 1 x P (x)
dx

= − −  

Orthogonality 
1 m m

n n1

2 (n m)!P (x)P (x)dx
2n 1 (n m)!−

+
= δ

+ −∫  

Hermite Polynomials 

Differential Equation  
(n is a non-negative integer) 

y '' 2xy ' 2ny 0− + =  

Rodrique’s Formula ( ) ( )2 2
n

n x x
n n

dH (x) 1 e e
dx

−= −  

Generating Function 
22tx t nn

n 0

H (x)e t
n!

∞
−

=

= ∑  

Recurrence Relation n 1 n n 1H (x) 2xH (x) 2nH (x)+ −= −  

Orthogonality 
2x n

m ne H (x)H (x) dx 2 n!
∞ −

−∞ mn= π δ∫  
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Laguerre Polynomials 

Differential Equation  
(n is a non-negative integer) 

xy '' (1 x)y ' ny 0+ − + =  

Rodrique’s Formula ( )
n

x n
n n

dL (x) e x e
dx

−= x  

Generating Function 
xt /(1 t)

n
n

n 0

e L (x)t
1 t

− − ∞

=

=
− ∑  

Recurrence Relation n 1 n n 1(n 1)L (x) (2n 1 x)L (x) nL (x)+ −+ = + − −  

Orthogonality x
m n0

e L (x)L (x) dx
∞ −

mn= δ∫  

Bessel Functions 

Ordinary Bessel Equation ( )2 2 2 2x y '' xy ' x y 0+ + λ − ν =  

General Solution (ordinary) 0 1y(x) A J ( x) A Y ( x)ν ν= λ + λ  

Modified Bessel Equation ( )2 2 2 2x y '' xy ' x y 0+ − λ + ν =  

General Solution (modified) 0 1y(x) A I ( x) A K ( x)ν ν= λ + λ  

Hankel Functions H (x) J (x) iY (x)ν ν ν= ±  

Note:  Several recurrence, derivative, and integral relationships for the Bessel functions are 
given in a subsequent subsection.  Additional relationships and some specific examples are also 
given in later subsections.  The orthogonality properties of the ordinary Bessel functions, which 
are somewhat complicated because of their relationship to the specified boundary conditions for 
a given problem, are also treated later in Section IX:  The Sturm-Liouville Problem and 
Generalized Fourier Series. 
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The Gamma Function 

Although not really in the same classification as the Special Functions summarized in the 
previous subsection, the so-called Gamma Function is also a very important function that is 
encountered frequently in application (and we will need it in subsequent developments).  The 
gamma function is an integral relationship that is defined as follows: 

          (8.10) n 1 x
0

(n) x e dx
∞ − −Γ = ∫

This integral is convergent for n > 0. 

Since integrals of this type occur so frequently, it becomes convenient to develop and tabulate 
several key relationships for future use.  In particular, three such expressions associated with the 
gamma function are given below. 

Gamma Function Relationships 

For any positive n (n 1) n (n)Γ + = Γ  

For a positive integer (n 1) n!Γ + =  

For n = 1/2 (1 2)Γ = π  

The remainder of this subsection formally develops these three relationships and gives a simple 
application of their use. 

Proof that, for any positive n, Γ  (n+1) = nΓ(n)

To see this, we have from eqn. (8.10) that 

  n x
0

(n 1) x e dx
∞ −Γ + = ∫

Now integrating by parts, with , we let udv uv vdu= −∫ ∫
x−−  n x n 1u x dv e dx then du nx dx v e             − −= = = =

Therefore, 

 
( )n x n 1 x

00

n 1 x
0

(n 1) x e nx e dx

(0 0) n x e dx n (n)

∞ ∞− − −

∞ − −

Γ + = − +

= − − + = Γ

∫

∫
 

Proof that, for a positive integer, Γ  (n+1) = n!

If n is a positive integer, then 

 x x
0 0

(1) e dx e (0 1) 1
∞∞ − −Γ = = − = − − =∫  

  (2) (1 1) 1 (1) 1Γ = Γ + = Γ =

  (3) (2 1) 2 (2) 2Γ = Γ + = Γ =
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  (4) (3 1) 3 (3) 3 2 1 3Γ = Γ + = Γ = × × = !

or, in general,   [where (n 1) n!Γ + = (n)Γ  is sometimes referred to as the generalized factorial 
function]. 

Proof that, for n = 1/2, Γ(1 2) = π   

Setting n = 1/2 in the basic definition gives, 

 1 2 x
0

(1 2) x e dx
∞ − −Γ = ∫  

Letting  gives dx  and putting this result into the integral reduces the original 
expression to 

2x u= 2udu=

 
2 21 u u

0 0
(1 2) u e 2udu 2 e du

∞ ∞− − −Γ = =∫ ∫  

Squaring this result gives 

 [ ] ( )2 22 2 u v2 u v
0 0 0 0

(1 2) 4 e du e dv 4 e dudv
∞ ∞ ∞ ∞ − +− −   Γ = =      ∫ ∫ ∫ ∫  

Now switching to polar coordinates with u r cos= θ  and v r sin= θ , we have 

  ( )2 2 2 2 2 2u v r cos sin r and dudv rdrd+ = θ + θ = → θ

and with the u,v domain limits defining the first quadrant, 0 u and 0 v  < < ∞ < < ∞ , the limits 
on r and  become θ 0 r and 0 2  < < ∞ < θ < π .  

Therefore, the above expression becomes 

 [ ] 2 22 r r2 2
0 0 0 0

0

1(1 2) 4 e rdrd 4 e d 2 d
2

∞π π
∞ − − Γ = θ = − θ = θ  ∫ ∫ ∫ ∫ 2

π

= π  

Thus, we have shown that ( )1 2 =Γ . π

An Example 

As a simple example of the use of the gamma function, consider the following integral, 

 
3y

0
I ye

∞ −= ∫ dy  

Letting 3 2x y and dx 3y dy 3x dy   = = = 2 3 , this becomes 

 ( ) ( )1 6 x 2 3 1 2 x
0 0

1 1 1I x e x dx x e dx 1 2
3 3 3

∞ ∞− − − −

3
π = = = Γ 

 ∫ ∫ =  

Thus, with the use of the gamma function, evaluating this integral is quite straightforward. 

 

 

Lecture Notes for Math Methods by Dr. John R. White, UMass-Lowell (updated Nov. 2003) 



Math Methods  --  Section VIII:  Special Functions and Orthogonality 9

Legendre’s Equation and Legendre Polynomials (in more detail) 

As an illustration of the kind of manipulations necessary to develop and work with the special 
functions identified previously, let's expand somewhat our discussion of Legendre's equation and 
Legendre polynomials.  The development and manipulations of the other special functions are 
handled in a similar manner (especially the various polynomial relationships  --  Hermite and 
Laguerre polynomials, for example). 

Solution via Power Series 

Recall that Legendre’s equation is given by 

        (8.11) ( )21 x y '' 2xy ' n(n 1)y 0− − + + =

Since eqn. (8.11) is analytic around x0 = 0, we can use the standard power series method to 
determine y(x).  For this case, let 

          (8.12) m
m

m 0
y(x) a x

∞

=

= ∑

and upon substitution of this form and its appropriate derivative relationships into the original 
equation, we get the recurrence relation 

 m 2 m
(n m)(n m 1)a

(m 2)(m 1)+
− + +

= −
+ +

a        (8.13) 

where a0 and a1 are arbitrary constants and m 0,1, 2,= .  Therefore, we can write the solution 
to Legendre's equation as 

         (8.14) 0 1 1 2y(x) a y (x) a y (x)= +

where 

 2
1

n(n 1) (n 2)(n 3)n(n 1)y (x) 1 x x
2! 4!

4+ − + +
= − + −     (8.15) 

and 

 3
2

(n 1)(n 2) (n 3)(n 4)(n 1)(n 2)y (x) x x x
3! 5!

− + − + − +
= − + −5    (8.16) 

These series converge for x 1≤ . 

Standard Form for Legendre Polynomials 

Now, in many applications, n in eqn. (8.11) will be a non-negative integer.  But, when this is 
true, the above expressions [i.e. eqns. (8.15) and (8.16)] reduce to polynomials of order n.  In 
particular, y1(x) is a polynomial of order n if n is even, and y2(x) is a polynomial of order n if n 
is odd.  These polynomials, multiplied by some constants, are called Legendre Polynomials. 

To put the polynomials into standard form, let's solve the above recurrence relation for am, 
giving 
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 m
(m 2)(m 1)a

(n m)(n m 1) m 2a +
+ +

= −
− + +

       (8.17) 

where 

  
n even m 0, 2, 4, n - 2

m n 2
n odd m 1, 3, 5, n - 2

        
          

= = ≤
≤ −  = = ≤

Now, instead of writing all the non-vanishing coefficients in terms of a0 or a1, let’s write them in 
terms of the coefficient of the highest power of x (i.e. an).  In particular, choosing an as 

 n n
(2n)!a

2 (n!)
= 2           (8.18) 

gives 

 n x 1P (x) 1
=

=           (8.19) 

for all n where the domain of interest is 1 x 1− ≤ ≤ . 

To put the desired polynomials into final form, note that using eqn. (8.17) with m = n-2 gives 

 n 2 n n 2
n(n 1) n(n 1)(2n)!a a

2(2n 1) 2(2n 1)2 (n!)−
− − −

= − =
− −

 

and, after some manipulation, this can be written as 

 n 2 n
(2n 2)!a

2 (n 1)!(n 2)!−
−

=
− −

 

Performing similar manipulations (i.e. some more magic) with m = n-4, eqn. (8.17) can also be 
written as 

 n 4 n 2 n
(n 2)(n 3) (2n 4)!a a

4(2n 3) 2 2!(n 2)!(n 4)!− −
− − −

= − =
− − −

 

This procedure can be continued to develop a general relationship for , or n 2ma for n 2m− − ≥ 0

 
m

n 2m n
( 1) (2n 2m)!a

2 m!(n m)!(n 2m)!−
− −

=
− −

       (8.20) 

and 

         (8.21) 
M

n 2m
n n 2m

m 0
P (x) a x −

−
=

= ∑

where M = n/2  or  M = (n-1)/2, which whichever is an integer. 

Note:  The above steps, although not completely rigorous, show the basic idea for putting the 
general solution into standard form.  The details here are not overly important, but eqns. (8.19) - 
(8.21) are indeed important, and they give the so-called Legendre Polynomials in standard form.  
The particular form given here is somewhat arbitrary, but it is consistent with most of the 
literature on this subject. 
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Some Low Order Legendre Polynomials 

Putting specific values into eqns. (8.20) and (8.21) gives (recall that n 2m 0− ≥ ): 

n m Pn(x) 

0 0 0P (x) 1=  

1 0 1
(1)(2)!P (x) x x

2(1)(1)(1)
= =  

2 0, 1 ( )2 0
2

(1)(4)! ( 1)(2)! 1P (x) x x 3x 1
(4)(1)(2)!(2)! (4)(1)(1)(1) 2

2−
= + = −  

3 0, 1 Etc. (but the algebra gets tedious) 

Some Important Relationships 

Note that Rodrique’s Formula can also be used to generate explicit formulae for the low order 
Legendre polynomials.  In particular, given Rodrique's formula, 

 ( )
n n2

n n n
1 dP (x) x 1

2 n! dx
=  

−          (8.22) 

we can develop the low order polynomials as follows: 

n Pn(x) 

0 0P (x) 1=  

1 ( )2
1

1 d 1P (x) x 1 (2x) x
2 dx 2

= − = =  

2 
( ) ( )

( )

2 22 2
2 2

3 2

1 d 1 dP (x) x 1 2 x 1 2x
(4)(2) 8 dxdx
1 d 1x x 3x 1
2 dx 2

   = − = −   

 = − = − 

 

3 Etc. (but this also becomes rather tedious) 
 

The best way to generate explicit formulae for the Legendre polynomials is to use one of the 
many Recurrence Relations that are available (see any good reference book on mathematical 
functions for a tabulation of these relationships   -  the well-known Handbook of Mathematical 
Functions by Abramowitz and Stegun is one excellent source, for example).  These recurrence 
relationships are particularly useful for computer evaluation of Legendre polynomials and their 
derivatives.  In particular, two such relations that are widely used are: 

       (8.23) n 1 n n 1(n 1)P (x) (2n 1)xP (x) nP (x)++ = + − −

and 
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( ) [2
n n n

dx 1 P (x) n xP (x) P (x)
dx −− = − ]1       (8.24) 

To illustrate the use of eqn. (8.23), let's develop an explicit expression for P3(x).  To do this we 
simply let n = 2 in the recurrence relationship, or 

 ( )
3

2
3 2 1

1 153P 5xP 2P (5x) 3x 1 2x
2 2

= − = − − = −
x 9x

2
 

Thus, 

 ( 3
3

1P (x) 5x 3x
2

= − )          (8.25) 

Since Pn(x) is simply a polynomial of order n, we can easily find first or higher-order derivative 
information.  For example,  is given by 2P '(x)

 ( )2
2

d 1P ' 3x 1 3x
dx 2

 = −  
=         (8.26) 

A recurrence formula, however, is very handy for computer implementation.  Using eqn. (8.24), 
we can generate this same result with 

 ( ) ( ) (2 2 3
2

xx 1 P ' 2 3x 1 x 3x x 2x 3x x 1
2

 − = − − = − − = −  
)2  

or  as before.   2P ' 3x=

As indicated previously, the most important special feature of the so-called Special Functions is 
their Orthogonality Property (see subsection on Orthogonal Functions).  For the Legendre 
polynomials this relationship is written as 

 
1

m n1

2P (x)P (x)dx
2n 1−

= δ
+∫ mn

=

=

       (8.27) 

where  is the Kronecker delta function. mnδ

Let’s derive this orthogonality relationship formally to show the basic procedure that is used for 
most developments of this type.  Since Pm(x) and Pn(x) satisfy Legendre’s equation, we have for 

 m n≠

       (8.28) ( ) ( )2
m m m1 x P '' 2xP ' m m 1 P 0− − + +

        (8.29) ( ) ( )2
n n n1 x P '' 2xP ' n n 1 P 0− − + +

Now multiply eqn. (8.28) by Pn(x) and eqn. (8.29) by Pm(x) and subtract the resultant 
expressions giving 

 ( )( ) ( ) [ ]2
n m m n n m m n m n1 x P P '' P P '' 2x P P ' P P ' m(m 1) n(n 1) P P 0− − − − + + − + =  

but 
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( )n m m n n m n m m n m n n m m n
d P P ' P P ' P P '' P ' P ' P P '' P ' P ' P P '' P P ''

dx
− = + − − = −  

Therefore, the above expression reduces to  

( ) ( ) ( ) [ ]2
n m m n n m m n m n

d1 x P P ' P P ' 2x P P ' P P ' n(n 1) m(m 1) P P
dx

− − − − = + − +  

Focusing again on the left hand side of this last expression, we see that 

( )( ){ } ( ) ( ) (2 2
n m m n n m m n n m m n

d d1 x P P ' P P ' 1 x P P ' P P ' 2x P P ' P P '
dx dx

− − = − − − − )  

Therefore, 

 ( ) ( ){ } [2
n m m n m n

d 1 x P P ' P P ' n(n 1) m(m 1) P P
dx

− − = + − + ]     (8.30) 

Finally, noting that the LHS is now an exact differential, we can integrate this expression over 
the domain of interest to give 

 ( )( ) [ ]
1 12

n m m n m n11
1 x P P ' P P ' 0 n(n 1) m(m 1) P (x)P (x)dx

−−
− − = = + − + ∫  

Note that the first part of this expression vanishes because the ( )21 x−  term evaluated at the 

limits goes identically to zero.  Thus, since m n≠ , the above expression reduces to  

          (8.31) 
1

m n1
P (x)P (x)dx 0

−
=∫

This is a statement of orthogonality for m n≠ . 

Developing a general expression for the normalization (i.e. for the case where m = n) is not very 
straightforward at all and there are a number of approaches that can be used (all of which are 
tedious).  The approach chosen here starts with the Generating Function for Legendre 
polynomials (mostly so we can show an example of its use),  

 n
n2

n 0

1 P (x)t
1 2xt t

∞

=

=
− +

∑         (8.32) 

Squaring both sides of eqn. (8.32) gives 

m n
m n m n2

m 0 n 0 m 0 n 0

1 P (x)t P (x)t P (x)P (x)t
1 2xt t

∞ ∞ ∞ ∞
m n+

= = = =

  
= =  − +   

∑ ∑ ∑ ∑  

Now integrating this expression gives 

 { } { }1 1 1m n 2 2n
m n n21 1 1

m 0 n 0 n 0

dx P (x)P (x)dx t P (x)dx t
1 2xt t

∞ ∞ ∞
+

− − −
= = =

= =
− + ∑ ∑ ∑∫ ∫ ∫  

where the last equality is a result of the orthogonality relationship in eqn. (8.31). 
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Working on the left hand side of this expression, we have with
  2a 1 t z -2tx and dz 2tdx= + = = −

that 

 
( )

2t
-2t

2t
2t

22

2

1 dz 1 1 a 2tln a z ln
2t a z 2t 2t a 2t

1 1 2t t 1 1 t 1 1 tln ln ln
2t 2t 1 t t 1 t1 2t t

−

+
+

− − = − + = −  + + 

  − + − +   = − = − =      + −+ +        

∫
 

But for t2 < 1, the term containing the natural log function can be rewritten in terms of an infinite 
series expansion as 

3 5 71 t t t tln 2 t
1 t 3 5 7

 +  = + + + + −   
        (8.33) 

Therefore, the integral becomes 

 
2 4 6 2n1

21
n 0

dx t t t t2 1 2
3 5 7 2n1 2xt t

∞

−
=

 
= + + + + =  1+− +  

∑∫  

Finally, we have the result  

 { }2n 1 2 2
n1

n 0 n 0

t2 P (
2n 1

∞ ∞

−
= =

=
+∑ ∑ ∫ nx)dx t  

and equating like coefficients, we see that 
1 2

n1

2P (x)dx
2n 1−

=
+∫          (8.34) 

which is the desired normalization for the orthogonality relation for Legendre polynomials when 
m = n. 

The Matlab legendre Function 

The above manipulations illustrate several features associated with Legendre polynomials, in 
particular, and more generally, a set of similar manipulations and relationships apply to all 
orthogonal polynomials.  For practical use, however, a key feature is to have access to a set of 
appropriate computational tools that implement the important relationships needed in 
applications.  Matlab indeed has a variety of “special function” functions (see help specfun) and, 
in particular, a function file for evaluating Legendre polynomials, legendre, is available.  
Actually, this Matlab function evaluates the associated Legendre polynomial, , but, as 
noted previously, this reduces to the standard Legendre polynomials for m = 0. 

m
nP (x)

As a simple example of using Matlab’s legendre function, the first six Legendre polynomials, P0 
– P5, are evaluated within lpoly_demo1.m (see Table 8.1) and plotted in Fig. 8.1  A few things 
to note here are that: 
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1. All the functions evaluated at x = 1 yield a value of unity.  This was expected since eqn. 
(8.19) for the “standard form” of the Legendre polynomials forces this normalization. 

2. All the functions [except P0(x)] have both positive and negative components, with n zero 
crossings for Pn(x).  This, of course, is consistent with the fact that there are n roots to an nth 
order polynomial.  Here we simply have n real roots in the range –1 < x < 1. 

 

 
Fig. 8.1  Several low-order Legendre polynomials from lpoly_demo1.m. 

We note also that the positive and negative behavior of the Legendre polynomials over the 
interval [-1,1] is essential for an orthogonality property to be valid.  In fact, we demonstrate 
within lpoly_demo1.m that the first six Legendre polynomials do indeed satisfy the 
orthogonality relationships given in eqns. (8.31) and (8.34).  In particular, the 6x6 table of 
integrals, 

1
m n1

P (x)P (x)dx for m 0 : 5 and n 0 : 5
−

= =∫  

are tabulated below (as produced from lpoly_demo1.m with the help of Matlab’s quadl 
numerical integration capability): 
   n   m ->   0             1              2              3              4              5  
   0     2.000e+000    -1.388e-017     4.163e-017     6.939e-018     4.857e-017     0.000e+000  
   1    -1.388e-017     6.667e-001    -2.776e-017    -8.327e-017     0.000e+000     1.388e-017  
   2     4.163e-017    -2.776e-017     4.000e-001     0.000e+000     1.388e-017     0.000e+000  
   3     6.939e-018    -8.327e-017     0.000e+000     2.857e-001     0.000e+000     1.388e-017  
   4     4.857e-017     0.000e+000     1.388e-017     0.000e+000     2.222e-001     0.000e+000  
   5     0.000e+000     1.388e-017     0.000e+000     1.388e-017     0.000e+000     1.818e-001 
 

Notice that all the off-diagonal elements in the 6x6 matrix are very small (essentially zero 
relative to the diagonal elements), and the diagonal entries do indeed satisfy the 2/(2n+1) 
normalization associated with the Legendre polynomials.  The data presented here give some 
validation of Matlab’s legendre function but, more importantly (since I never had any doubt 
about Matlab’s accuracy or robustness), this demo simply shows that the capability exists and 
that it is pretty simple to use in a variety of situations… 
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Table 8.1  Listing of Matlab files lpoly_demo1.m and lpoly_demo1a.m. 

% 
%   LPOLY_DEMO1.M    Sample script file to plot several low-order Legendre 
%                  polynomials and to demonstrate their orthogonality property 
% 
%   This sample file generates plots of the P0(x) - P5(x) Legendre polynomials.  It 
%   also uses Matlab's QUADL routine to evaluate integrals of Pm(x)Pn(x) over the  
%   interval [-1,1].  This should show the orthogonality property of the Legendre  
%   polynomials. 
%   
%   The real purpose here is simply to demonstrate the use of Matlab's LEGENDRE  
%   function. 
% 
%   File written by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all, close all,  nfig = 0; 
% 
%   set color and marker code for creating plots 
      Ncm = 6; 
      scm = ['r-';      % red solid 
             'g:';      % green dotted 
             'b-';      % blue solid 
             'm:';      % magenta dotted 
             'c-';      % cyan solid 
             'y:'];     % yellow dotted 
% 
%   set up independent variable 
      Nx = 51;   x = linspace(-1,1,Nx);    
% 
%   evaluate Pn(x) for n = 0:5   
%   (note that m = 0 in the associated Legendre polynomials gives the desired  
%    functions, and this is the first row of the variable returned from LEGENDRE) 
      P = zeros(Nx,6);     % initialize space for storage of Pn(x) 
      for n = 1:6 
        AP = legendre(n-1,x);   P(:,n) = AP(1,:)'; 
      end 
% 
%   now let's plot all six curves 
      nfig = nfig+1;  figure(nfig) 
      for n = 1:6 
        plot(x,P(:,n),scm(n,:),'LineWidth',2), grid on, hold on 
        txt(n) = {['P',num2str(n-1),'(x)']};   
      end  
      title('LPoly\_Demo1:  Several Low-Order Legendre Polynomials')                                
      xlabel('x value'),ylabel('P_n(x)') 
      legend(txt) 
% 
%   evaluate the orthogonality condition (use Matlab's QUADL routine) 
      PmPn = zeros(6,6);   % initialize space for storage of PmPn integrals 
      for n = 1:6 
        for m = 1:6 
          PmPn(m,n) = quadl('lpoly_demo1a',-1,1,[],[],m,n); 
        end 
      end 
% 
%   print out table of PmPn integrals 
      fprintf('   n   m ->   0             1              2              3              4              
5 \n') 
      for n = 1:6 
        fprintf(' %3i   %12.3e   %12.3e   %12.3e   %12.3e   %12.3e   %12.3e \n', ... 
                 n-1,PmPn(:,n)); 
      end 
% 
%   end of demo 
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% 
%   LPOLY_DEMO1A.M   Called by QUADL to determine Pm*Pn integrals 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
      function f = ifile(x,M,N) 
      APm = legendre(M-1,x);   APn = legendre(N-1,x); 
      f = APm(1,:).*APn(1,:);   % recall that the 1st row is the Legendre poly 
% 
%   end of function 
 

 

 

Application Notes 

The primary purpose of the above developments is simply to demonstrate several important 
relations for a particular set of orthogonal polynomials.  Similar manipulations can be performed 
for the other orthogonal functions (Hermite polynomials, Laguerre polynomials, etc.) and the 
reader is encouraged to seek out further details as needed for a particular application.  Note that 
the choice of the specific orthogonal polynomial for a given application is often dictated by the 
domain of interest. 

For Legendre polynomials, for example, the functions are orthogonal over an interval 
 and this range makes them particularly suitable for problems involving spherical 

coordinates.  In particular, Legendre polynomials are used extensively where the directional 
dependence of some quantity is treated explicitly  --  such as particle transport problems.  Often, 
one of the direction variables, say θ , ranges from 0 to 

1 x 1− ≤ ≤ +

π  (i.e. 0 ≤ θ ≤ π ) and a simple change of 
variables, µ = , has µ  varying between cosθ 1± ; the domain of interest for Legendre 
polynomials. 

For example, say some quantity, Σ , is a function of the direction variable .  Then, θ

  ( ) ( ) ( )cos where cos      Σ θ → Σ θ → Σ µ µ = θ

and one can write Σ µ  in terms of Legendre polynomials, or ( )

        (8.35) 
N

n n n n
n 0 n 0

( ) a P ( ) a P ( )
∞

= =

Σ µ = µ ≈ µ∑ ∑

where, in practice, the infinite series is truncated to a finite number of terms, giving an 
approximate relationship for .  The first part of eqn. (8.35) is just a Generalized Fourier 
Series (or sometimes called a Fourier-Legendre series) representation for the function .  
The truncation to a finite number of terms represents the usual approximation made in most 
practical applications. 

( )Σ µ
( )Σ µ

The expansion coefficients in eqn. (8.35) can be found by multiplying both sides of the 
expression by  and integrating to give mP ( )µ

  
N1 1

m n m1 1
n 0

P ( ) ( )d a P ( )P ( )d
− −

=

µ Σ µ µ = µ µ µ∑∫ ∫ n
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Finally, one simply uses the orthogonality property of the Legendre polynomials and solves for 
an, which gives 

 
N1

m n mn m1
n 0

2 2P ( ) ( )d a a
2n 1 2m 1−

=

  µ Σ µ µ = δ =  

+ +  

∑∫ 
 

or  

 
1

n n1

2n 1a P ( ) ( )d
2 −

+
= µ Σ∫ µ µ         (8.36) 

One computes and stores the an's given basic information about ( )Σ µ , and then, when needed, 
 is reconstructed using eqn. (8.35). ( )Σ µ

Note:  In neutron and photon transport analyses, ( )Σ µ  is the macroscopic scattering cross 
section as a function of the scattering angle (a cross section is related to the probability that a 
particular interaction will occur).  This quantity is computed, on the fly, as part of the transport 
computations, and it is the expansion coefficients that are actually stored in the cross section 
library used in the code calculations.  Most discrete ordinates transport codes (like the ANISN or 
DORT codes, for example) use a low order expansion for ( )Σ µ  (i.e. N = 3 or 5).  For example, if  
N = 5 in a given calculation, we refer to the cross section representation as a P5 approximation 
(which implies that a set of Legendre polynomials up to 5th order are used to represent the 
functional dependence of the cross sections with scattering angle).  This approach gives good 
results and it saves a considerable amount of computational time and memory (relative to the use 
of the exact Σ µ  behavior of each material). ( )
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Bessel’s Equation and Bessel Functions (in more detail) 

Another important class of special functions is the so-called Bessel Functions.  These functions 
are applicable in a wide variety of situations and, similar to the other special functions, one 
particular set of Bessel functions also has the property of orthogonality.  This subsection 
overviews the definition and development of the Bessel functions and highlights some key 
features that are useful in practical application. 

Bessel’s Equation 

The ordinary Bessel equation is given as 

( )2 2 2 2x y '' xy ' x y 0+ + λ − ν =        (8.37) 

where ν is referred to as the order of the Bessel function and λ is a parameter within the 
argument of the resultant Bessel functions.  If we let t x= λ , then 

 dy dy dt dy
dx dt dx dt

= = λ  

and 

 
2 2

2
2 2

d y d dy dt d dy dt d y
dt dx dx dt dt dxdx dt

   = = λ = λ   
   

 

Therefore, with these substitutions, eqn. (8.37) becomes 

 ( )
2

2 2 2
2

d y dyt t t y
dtdt

+ + − ν = 0         (8.38) 

This form, written with t = x, gives 

         (8.39) ( )2 2 2x y '' xy ' x y 0+ + − ν =

This is the most common representation of Bessel’s equation.  This is unfortunate since eqn. 
(8.37) is more general and actually occurs more frequently in practice.  However, as shown here, 
the extension to included a parameter λ is straightforward (we simply replace x with λx). 

One Solution via the Power Series Method 

Since eqn. (8.39) has a regular singular point at x = 0, we need to use the extended power series 
method.  Thus, we try 

          (8.40) m r
m

m 0
y(x) a x

∞
+

=

= ∑

and, upon substitution of this assumed solution and its derivatives into the defining differential 
equation, the indicial equation becomes (for 0a 0≠ ), 

          (8.41) (r )(r ) 0+ ν − ν =

Therefore, one gets two roots:      and   1r = ν 2r = −ν . 
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Focusing first on , the recurrence relation becomes 1r = ν

 
( )2m 2m 22
1a

2 m m −= −
ν +

a         (8.42) 

for m .  This form is a little different than usual.  In particular, since in the typical 
representation all the odd coefficients vanish (i.e. a ,

1, 2, 3,=

1 3 5a , a , 0= ), we simply replaced m with 
2m-2, which then reduces to eqn. (8.42), with the index m varying from 1 to ∞ in unit increments 
(this is why the above coefficient is written as a2m). 

Finally, to put the solution into standard form, we define a0 as 

 0
1a

2 !ν=
ν

          (8.43) 

and the first solution to the ordinary Bessel's equation becomes 

          (8.44) 2m
1 2m

m 0
y (x) a x +ν

=

= ∑

This function is called an ordinary Bessel function of the first kind and it is denoted by J .  
After some manipulation, the infinite series representation for  can be written as 

(x)ν

J (x)ν

 
m 2m

2m
m 0

( 1) xJ (x) x
2 m! (m 1

∞
ν

ν +ν
=

−
=

Γ + ν +∑ )
       (8.45) 

where  is the generalized factorial function (i.e. the Gamma Function).  Equation (8.45) is 
the formal definition of  and this series converges for all values of x. 

(n)Γ
J (x)ν

Performing similar operations for r2 = −ν  gives a second solution to eqn. (8.39), or 

 
m 2m

2m
m 0

( 1) xJ (x) x
2 m! (m 1

∞
−ν

−ν −ν
=

−
=

Γ − ν +∑ )
      (8.46) 

This series converges for all values of x except for x = 0. 

Linear Independence 

If ν is not an integer,  and  are linearly independent.  We can see this by focusing on the 
functions in the vicinity of x = 0.  Near x = 0, the negative exponent in 

Jν J−ν

J−ν  indicates that this 
function is unbounded, while J  is clearly bounded.  Therefore, the two functions are not 
proportional  -  thus they must be linearly independent. 

ν

For ν equal to an integer, the situation is quite different.  In this case the two roots of the indicial 
equation from the power series solution differ by an integer, and we have learned to be cautious 
about linear independence when this occurs.  To address the question of linear independence 
further, consider the following equality (taken from Problem 10.10 in the Schaum’s Outline 
Series, Advanced Mathematics),  
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 2sinJ '(x)J (x) J '(x)J (x)
xν −ν −ν ν
νπ

− =
π

      (8.47) 

The left hand side of this relationship is simply the Wronskian of Jν  and  (with a negative 
sign), or 

J−ν

 1 2
2 1 1 2

1 2

y y
W y ' y y ' y J ' J

y ' y '
J ' J−ν ν ν −= = − = − ν

n

0

     (8.48) 

Now, for ν = n where n is an integer, the right hand side of eqn. (8.47) is clearly zero (i.e. 
 for integer n).  Therefore, W = 0, and Jsin n 0π = n and J-n are linearly dependent.  In fact, it is 

easy to show from the infinite series representations that, for n an integer, 

          (8.49) n
nJ (x) ( 1) J (x)− = −

For ν not an integer, sin  and 0νπ ≠ W ≠ , and the two solutions, Jν  and J , are linearly 
independent (as shown above).  Therefore, when ν is not an integer the general solution to the 
ordinary Bessel’s equation becomes 

−ν

         (8.50) 0 1y(x) c J (x) c J (x)ν −ν= +

When ν = n is an integer, we need to develop a second linearly independent solution via some 
other means. 

Ordinary Bessel Functions of the Second Kind 

In searching for a second linearly independent solution, consider the following development.  
For  integer, J  are linearly independent and eqn. (8.50) represents the 
general solution to eqn. (8.39).  Now let’s define a new function, , in terms of these two 
linearly independent functions, or 

ν ≠ (x) and J (x)  ν −ν

Y (x)ν

 cos J (x) J (x)Y (x)
sin
ν −ν

ν
νπ −

=
νπ

       (8.51) 

Now since  are linearly independent for non-integer ν, we can write the general 
solution to Bessel’s equation as 

J (x) and Y (x)  ν ν

ν         (8.52) 0 1y(x) A J (x) A Y (x)ν= +

where it is easy to see the correspondence with eqn. (8.50) with values of c0 and c1 given by 

 1
0 0 1 1

cos Ac A A and c
sin sin

νπ
= + = −

νπ νπ
 

Now our real interest with these manipulations is to determine what happens when  becomes 
an integer.  For this situation, let’s take the limit of eqn. (8.51) as 

ν
nν → .  Performing this 

operation gives 

 n n n

cos J (x) J (x)Y (x) lim Y (x) lim
sin
ν −ν

νν→ ν→

νπ −= =  νπ 

      (8.53) 
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which, via eqn. (8.49), gives an indeterminate form upon substitution, or 

 
n n

n n
n

( 1) J (x) ( 1) J (x) 0Y (x)
sin n 0

− − −
= =

π
 

Therefore, to determine this limit, we use L’Hospital’s Rule, or 

 n n

d dcos J (x) sin J (x) J (x)
d dY (x) lim

cos

ν ν

ν→

 νπ − π νπ − ν ν=  π νπ 
 

−ν
 

where it is important to note that the derivative is taken with respect to ν.  Upon actually taking 
the limit, we have 

 
n

n
n

n

( 1) d dY (x) ( 1) J (x) J (x)
d dν −ν

ν=

− = − −π ν ν 

      (8.54) 

Now taking the indicated derivatives, item by item, and simplifying, one gets (after considerable 
manipulation!!!) 

   ( )m 1n n n 1
2m 2mm m n

n n 2m n 2m n
m 0 m 0

( 1) h h2 x x x (n m 1)!Y (x) J (x) ln x x
2 2 m!(m n)! 2 m!

− −∞ −
+

+ −
= =

− + − − = + γ + − π π π+ 
∑ ∑  (8.55) 

with ( )0 s ss

1 1 1h 0 h 1 and lim h lns
2 3 s →∞

= = + + + + γ = −  

where  is known as Euler’s constant.  Although this function is very ugly and 
extremely tedious to work with in this form, it is, nevertheless, as important function.  It is well 
known and it can be manipulated, evaluated numerically, plotted, differentiated, integrated, etc., 
just like any other function.  and  are known as ordinary Bessel functions of the 
second kind. 

0.577215665γ ≈

Y (x)ν nY (x)

For numerical evaluation, the ordinary Bessel functions of the first and second kind are usually 
fit to polynomial expansions, the expansion coefficients are tabulated (see Abramowitz and 
Stegun’s Handbook on Mathematical Functions, for example), and a relatively simple 
polynomial is then evaluated each time one needs to compute J  or . (x)ν Y (x)ν

Summary Expressions  --  Ordinary Bessel Functions 

Ordinary Bessel Equation ( )2 2 2 2x y '' xy ' x y 0+ + λ − ν =  

General Solution (ordinary) 0 1y(x) A J ( x) A Y ( x)ν ν= λ + λ  

Definition of  Yν
cos J ( x) J ( x)Y ( x)

sin
ν −ν

ν
νπ λ − λ

λ =
νπ

 

Definition of nY  n n
Y ( x) lim Y ( x)νν→

λ = λ  
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Summary Expressions  --  Modified Bessel Functions 

Modified Bessel Equation ( )2 2 2 2x y '' xy ' x y 0+ − λ + ν =  

General Solution (modified) 0 1y(x) A I ( x) A K ( x)ν ν= λ + λ  

Definition of  Iν I ( x) i J (i x)−ν
ν νλ = λ  

Definition of  Kν
I ( x) I ( x)K ( x)

2 sin
−ν ν

ν
π λ − λ

λ =
νπ

 

Definition of nK  n n
K ( x) lim K ( x)νν→

λ = λ  

 

In the above table,  is referred to as a modified Bessel function of the first kind and 
 is known as a modified Bessel function of the second kind. I

I ( x)ν λ
K ( x)ν λ and Kν ν  are linearly 
independent for any ν > . 0

Summary Expressions  --  Hankel Functions 

The Hankel functions of the first and second kind are complex conjugates and they are written as 

   (8.56) (1) (2)H ( x) J ( x) iY ( x) and H ( x) J ( x) iY ( x)ν ν ν ν ν νλ = λ + λ λ = λ − λ

Additional Properties and Relationships Among the Bessel Functions 

Several important Recurrence Formulas (where we have not included the functional 
dependence on x for simplicity): 

1 1
2J J
xν+ ν ν−
ν

= − J  1 1
2Y Y
x

Yν+ ν ν−
ν

= −  

1 1
2I I
xν+ ν− νIν

= −  1 1
2K K K
xν+ ν− ν
ν

= +  

 

Some important Derivative Formulas: 

v 1 v 1J ' J J J J
x xν − ν +
ν ν

= − = − + ν  v 1 v 1Y ' Y Y Y Y
x xν − ν + ν
ν ν

= − = − +  

v 1 v 1I ' I I I I
x xν − ν +
ν ν

= − = + ν  v 1 v 1K ' K K K K
x xν − ν + ν
ν ν

= − − = − +  

 

Some important Integral Formulas: 

One can use the derivative formulas to derive various integral relations.  For example, the above 
expression for , for , gives J '(x)ν 0ν =
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0 1J '(x) J (x)= −  

Thus, from this relationship, we have  

1J (x)dx J (x)= −∫ 0          (8.57) 

Similarly, the expression for , for ν = 1, gives J '(x)ν

 1 0 1 1 1 0
1J '(x) J (x) J (x) or xJ '(x) J (x) xJ (x)
x

= − + =  

The left hand side of the last expression can be written as the derivative of the  product, or 1xJ (x)

 [ ]1 0
d xJ (x) xJ (x)

dx
=  

Therefore, integrating this expression gives 

          (8.58) 0xJ (x)dx xJ (x)=∫ 1

Some Plots and Limiting Values for the Low-Order Bessel Functions 

It is important to have a feeling for the functional behavior of the Bessel functions for various 
values of the argument x.  This is particularly true for the low-order integer Bessel functions 
since they occur so frequently in practical applications.  To show this behavior, a short Matlab 
file called bessplt.m has been written to plot some low-order Bessel functions and the resultant 
plots are given in Fig. 8.2.  From here it is obvious that the ordinary Bessel functions are 
oscillatory in nature and that the modified Bessel functions tend to look more like decaying and 
growing exponentials (this is a rough description only).  A listing of bessplt.m is given in Table 
8.2, and this can serve as an example of how to work with Bessel functions within the Matlab 
environment. 

Also of interest here are the limiting values of the low-order integer Bessel functions on the 
interval [ ]0 x≤ ≤ ∞ .  In particular, the limiting values can be summarized as follows: 

 0J (x)  1J (x)  0Y (x)  1Y (x)  0I (x)  1I (x)  0K (x)  1K (x)

as x 0→  1 0 -∞ -∞ 1 0 ∞ ∞ 
as x → ∞  oscillates oscillates oscillates oscillates ∞ ∞ 0 0 

These quantities are particularly useful in evaluating boundary conditions for BVPs which can 
be solved in terms of integer-order Bessel functions. 

The are many more useful relationships for the Bessel functions that have not been tabulated 
here, and the student is encouraged to browse the literature for a more comprehensive treatise on 
this subject.  We will return to the subject of orthogonality for the ordinary Bessel functions in a 
later section, and the next subsection gives a recipe for treating a variety of general variable 
coefficient second-order equations with Bessel function solutions.  Beyond this, if the need 
arises, the reader can always find additional information on this important subject from a variety 
of sources (there is a lot out there on a wide variety of subjects involving Bessel functions). 
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Fig. 8.2  Some plots for the low-order Bessel functions. 

 

Table 8.2  Listing of Matlab m-file bessplt.m. 

% 
%   BESSPLT.M    Sample script file to plot some low-order Bessel Functions 
% 
%   This is a sample file to generate plots of the zero and first order Bessel  
%   functions - J0(x), J1(x)   and   Y0(x), Y1(x) 
%             - I0(x), I1(x)   and   K0(x), K1(x) 
% 
%   File written by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all, close all,  nfig = 0; 
% 
%   setup independent variable, but don't evaluate at exactly zero since some 
%   of the functions have a singular point at zero 
      Nx1 = 201;   x1 = linspace(eps,10,Nx1);   % range for ordinary BF plots 
      Nx2 = 201;   x2 = linspace(eps,4,Nx2);    % range for modified BF plots 
% 
%   evaluate ordinary Bessel functions 
      J0 = besselj(0,x1);    Y0 = bessely(0,x1); 
      J1 = besselj(1,x1);    Y1 = bessely(1,x1); 
% 
%   evaluate modified Bessel functions 
      I0 = besseli(0,x2);    K0 = besselk(0,x2); 
      I1 = besseli(1,x2);    K1 = besselk(1,x2); 
% 
%   now let's plot these curves 
      nfig = nfig+1;   figure(nfig) 
      subplot(2,2,1),plot(x1,[J0;Y0],'LineWidth',2),grid 
      axis([0 10 -2 2]); 
      gtext('J_0(x)'),gtext('Y_0(x)') 
      gtext('J_0 and Y_0 Bessel Functions') 
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% 
      subplot(2,2,3),plot(x1,[J1;Y1],'LineWidth',2),grid 
      axis([0 10 -2 2]); 
      gtext('J_1(x)'),gtext('Y_1(x)') 
      gtext('J_1 and Y_1 Bessel Functions') 
% 
      subplot(1,2,2),plot(x2,[I0;I1;K0;K1],'LineWidth',2),grid 
      axis([0 4 0 10]); 
      gtext('I_0(x)'),gtext('I_1(x)'),gtext('K_0(x)'),gtext('K_1(x)') 
      gtext('Modified Bessel Functions') 
% 
%   end of demo 
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Equations Solvable in Terms of Bessel Functions 

If    and d, p, q are nonzero, then the differential equation ( )21 a 4c− ≥

    (8.59) ( ) ( )2 p 2q p 2 2px y '' x a 2bx y ' c dx b a p 1 x b x y+ + + + + + − + = 0

has complete solution 

 ( ) ( )px q
1 2y(x) x e C J x C Y xα −β

ν ν
= λ +

q λ        (8.60) 

where 

 

1
12 2 2

d1 a b 1 (1 a) 4c
2 p q 2q

               −  α = β = λ = ν = − −      (8.61) 

with conditions: 

  
- -

1. if d 0, replace J and Y with I and K
2. if n, Y and K can be replaced with J and I

                
                

ν ν ν ν

ν ν ν

<
ν ≠ ν

An exception to the above rule exists only when the equation reduces exactly to a second-order 
Euler-Cauchy equation of the form 

  y '' axy ' by 02x + + =

which has solutions in the form  y = xm  (see Section II of these notes). 

The expressions summarized in eqns. (8.59) - (8.61) represent a recipe for analytically solving a 
wide class of problems in terms of the ordinary or modified Bessel functions.  Many 2nd order 
variable coefficient linear systems can be cast into this form and, if this can be done, the above 
equations represent a systematic approach for solving these systems.  Two specific examples, 
Example 8.1 and Example 8.2, illustrate the use of this general relationship. 

A third problem involving Bessel functions, Example 8.3, is also available.  This example 
illustrates the use of the modified Bessel functions to get an analytical solution to a simple heat 
conduction problem in cylindrical coordinates.  Plotting of the resultant temperature and gradient 
profiles is done in a simple Matlab file as another example showing the evaluation of the Bessel 
functions within the Matlab environment. 
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Example 8.1  --  Solution Using Elementary and Bessel Function Methods  

Problem Description: 

Find the general solution to the following equation using an elementary approach (linear 
constant coefficient system) and by using the general form of Bessel's equation: 

  y '' y 0+ =

Problem Solution: 

Method 1  Elementary Solution 

This is a constant coefficient linear 2nd order ODE.  Therefore, we let y e , and the 
characteristic equation becomes  with roots 

xλ=
2 1 0λ + = iλ = ± .  Thus the general solution can be 

written as 

  ix ix
1 2 1 2y(x) k e k e or y(x) c cos x c sin x−= + = +

Method 2  Bessel Function Solution 
Comparing the defining ODE with the most general form of Bessel’s equation [see eqns. (8.59) - 
(8.61)], we have 

  2 2x y '' x y 0+ =

By equating the coefficient of the y′(x) term (i.e. pa 2bx 0+ = ), we have a = b = 0.  Therefore, 
the coefficient of the y(x) term becomes 

  2q p 2 2p 2c dx b(a p 1)x b x x+ + + − + =

but with a = b = 0, we have 

  2q 2c dx x+ =

Therefore, letting c = 0, d = 1, and q = 1 gives the desired equality. 

With all the coefficients known and all the proper conditions satisfied, we can evaluate the 
constants in the general solution as follows: 

 1 a 1 b 0
2 2 p
−

α = = β = =  

 
( )2d 1 a 4c 11

q 2
− −

λ = = ν = =
q 2

 

Therefore, the solution to the original ODE becomes 

 1 2
1 1 2 2 1 2y(x) x a J (x) a J (x)− = +   
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This implies that the half-order Bessel functions must be related to the sine and cosine functions, 
since the solutions using the two different methods must be identical.  From Problem 10.4 in the 
Schaum’s Outline Series on Advanced Mathematics,  we have 

 1 2 1 2
2 2J (x) sin x and J (x) cos x
x x−= =

π π
 

Therefore the solution for y(x) can be written as 

 1 2 1
2 1 2 1y(x) x a sin x a cos x c sin x c cos x

x x
 

= + = π π 
2+  

and this solution is of the form that we expect for a linear constant coefficient system.  Although 
using Bessel functions is not the most efficient way to go for this problem, this example simply 
illustrates that the Bessel functions are applicable to a wide variety of systems (they were 
originally identified as a set of solutions for variable coefficient systems and here they were used 
to solve a constant coefficient system). 
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Example 8.2  --  Solution Using Bessel Function Methods  

Problem Description: 

Find the general solution to the following equation using the general form of Bessel's equation: 

  ( ) ( )2 4 8 2x y '' x 4x 3 y ' 4x 5x 3 y 0+ − + − + =

Problem Solution: 

By equating the coefficients of the y′(x) term with the most general form of Bessel’s equation 
[see eqns. (8.59) - (8.61)], we have 

 p 4a 2bx 3 4x+ = − +  

Therefore, a = -3, b = 2, and p = 4. 

With these constants specified, the coefficient for the y(x) term becomes 

  ( )2q p 2 2p 2 8c dx b a p 1 x b x 3 5x 4x+ + + − + = − +

  2q 4 8 2 8c dx 2( 3 4 1)x 4x 3 5x 4x+ + − + − + = − +

Therefore, c = 3, d = -5, and q = 1. 

Now, since the conditions of the method are satisfied, the constants within the general solution 
become 

 1 a b 12
2 p
−

α = = β = =
2

 

 
( )2d 1 a 4c 16 125 1

q 2q
− − −

λ = = ν = = =
2

 

Finally, since d < 0, we have 

 ( ) ( )
4x

2 2
1 1 2 1y(x) x e c I 5x c K 5x

−  = +   

This represents an analytical solution to the given problem (a tough problem indeed).  In a 
realistic BVP, one would now apply appropriate boundary conditions to uniquely identify the 
two arbitrary coefficients within the general solution.  The next example takes this final step to 
produce a complete unique solution to a particular heat transfer application. 
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Example 8.3  --  Analytical Solution to the Circular Fin Problem 

Problem Description: 

With the figure, general notation, and the model development given previously (see Section V), 
analytically determine the temperature and temperature gradient profiles for the circular fin 
problem given the following numerical data: 

rw  = 1 in. rs  = 1.5 in. δ = 0.0625 in. 

Tw  = 200 °F T∞  = 70 °F  

h = 20 BTU/hr-ft2-°F k = 75 BTU/hr-ft-°F  

Evaluate and plot the normalized temperature and gradient profiles and determine the absolute 
fin edge temperature.  Also determine the total heat loss from the fin and compute the fin 
efficiency, η, where 

 
w

actual heat transfer
heat transfer if entire fin is at T

  
       

η =  

Problem Solution: 

The dimensionless form of the steady state energy balance for combined heat conduction and 
convection for a cylindrical fin configuration is given as (see the formal development with 
appropriate limitations and definitions in Section V of these notes): 

 
2

2 2 2 2 s2hrx u '' xu ' x u 0 with
k

+ − α = α =
δ

 

with boundary conditions, 

w s s sat x r r a, u(a) 1 and at x r r b 1, u '(b) 0= = = = = = =  

With our recent discussion concerning Bessel functions, one recognizes this as a special form of 
the modified Bessel’s equation, 

2 2 2 2x y '' xy ' ( x )y 0+ − α − ν =  

with general solution 

1 2y(x) c I ( x) c K ( x)ν ν= α + α  

Comparing this standard system to the energy balance for the problem of interest shows that 
 and the general solution for the normalized temperature profile is 0ν =

1 0 2 0u(x) c I ( x) c K ( x)= α + α  

Applying the boundary conditions to this general solution gives: 

1.  For u(a) = 1, we have 

1 0 2 0c I ( a) c K ( a) 1α + α =  
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2.  For u′(b) = u′(1) = 0, we have 

1 0 2 0

1 1 2 1

d d d du '(x) c I ( x) ( x) c K ( x) ( x)
d( x) dx d( x) dx

c I ( x) c K ( x)

= α α + α
α α

= α α − α α

α
 

and letting x = 1 gives 

1 1 2 1c I ( ) c K ( ) 0α α − α α =  

Thus, the two boundary conditions give two coupled equations for c1 and c2, or 

1 0 2 0

1 1 2 1

c I ( a) c K ( a) 1
c I ( ) c K ( ) 0

α + α =
α α − α α =

 

From the second equation, we see that  

1
1 2

1

K ( )c c
I ( )

α
=

α
 

and putting this into the first equation in the set gives 

1
2 0 0

1

K ( )c I ( a) K ( a)
I ( )

 α
α + α = α 

1 

Thus, the two coefficients become 

1
2

1 0 1 0

I ( )c
K ( )I ( a) I ( )K ( a)

α
=

α α + α α
 

and 

1
1

1 0 1 0

K ( )c
K ( )I ( a) I ( )K ( a)

α
=

α α + α α
 

Putting these constants into the general solution gives an explicit formulation for the normalized 
temperature profile, or 

1 0 1 0

1 0 1 0

K ( )I ( x) I ( )K ( x)u(x)
K ( )I ( a) I ( )K ( a)

α α + α α
=

α α + α α
 

The temperature gradient can also be evaluated to give 

1 1 1 1

1 0 1 0

K ( )I ( x) I ( )K ( x)u '(x)
K ( )I ( a) I ( )K ( a)

α α α − α α α
=

α α + α α
 

These analytical expressions are evaluated using the parameter specifications given above within 
the Matlab file cylfina.m.  This file is listed in Table 8.3 and the resultant temperature and 
gradient profiles are plotted in Fig. 8.3.  Note that the results here are exactly the same as those 
developed using the numerical techniques discussed in Section V (see Example 5.3A and 
Example 5.3B).  As before, we also compute the fin efficiency as 
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actual

ideal

q
q

η =  

where the ideal energy transfer is computed assuming that the fin temperature is constant at the 
wall value, or 

( )2 2
ideal c w s w wq hA (T T ) 2 h r r (T T∞ ∞= − = π − − )  

The actual energy transferred from the fin can be computed from the conduction representation 
at the wall, or 

( ) ( )
w

w
actual w w

r s

dT T Tq k 2 r k 2 r u
dr r

∞ −
= − π δ = − π δ  

 
'(a)  

Table 8.4, which contains a listing of the output file from cylfina.m, shows that the numerical 
values for the heat transfer and fin efficiency from the analytical solution are exactly as 
computed in Example 5.3A and Example 5.3B (using numerical methods).  The overall 
efficiency of about 93% and a tip temperature of almost 188 F  -  a drop of only 12 F from the 
wall temperature  -  indicate a fairly efficient overall fin arrangement. 

This problem represents a good illustration of the use of Bessel functions in finding analytical 
solutions to a real problem.  It also serves as a good example of how to apply the general 
analytical solution scheme, including the evaluation of the boundary conditions to determine the 
unknown coefficients in the general solution.  In addition, the Matlab m-file associated with this 
problem, cylfina.m, can be used as another example of the evaluation of the Bessel functions 
within the Matlab environment.  Finally, the combination of this example and those given in 
Section V (Example 5.3A and Example 5.3B) also represents a series of applications that 
contrast the various techniques generally available for solving linear boundary value problems 
(BVPs). 

 

 
Fig. 8.3  Solution profiles for the circular fin problem (Analytical Solution). 
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Table 8.3  Listing of Matlab program cylfina.m. 

% 
%   CYLFINA.M   Heat Transfer in a Cylindrical Fin (Analytical Solution) 
% 
%   This file solves the cylindrical fin heat transfer problem using modified  
%   Bessel functions. The base problem is defined via the following equation: 
% 
%     x^2*u'' + x*u' - ALF2*x^2*u = 0    where   ALF2 = 2*h*rs^2/[k*thk] 
% 
%     with B.C.   u(a) = 1    and    u'(b) = 0 
%      and        a = rw/rs   and    b = rs/rs = 1 
% 
%     where   u = normalized temp = [T(r) - Tinf]/[Tw - Tinf] 
%             x = normalized distance = r/rs 
% 
%     with   rw, rs = inside and outside radius of fin, respectively 
%            thk = thickness of fin 
%     and    h, k, Tw, and Tinf are all given quantities (fixed) 
% 
%   From the normalized solution we can construct absolute profiles (if desired): 
%       T(r)  =  Tinf + u(x)[Tw - Tinf] 
%       T'(r) =  u'(x)[Tw - Tinf]/rs 
% 
%   The above development is given as part of the course notes in the Math 
%   Methods course (10/24.539). 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all, close all, nfig = 0; 
% 
%   basic data for the problem 
      rw = 1/12;    rs = 1.5/12;    % inside and outside radius (ft) 
      thk = .0625/12;               % thickness of fin (ft) 
      Tw = 200;    Tinf = 70;       % inside wall and ambient temps (F) 
      h = 20;                       % heat transfer coeff (BTU/hr-ft^2-F) 
      k = 75;                       % thermal conductivity (BTU/hr-ft-F) 
% 
%   derived constants 
      a = rw/rs;   b = rs/rs; 
      alf2 = (2*h*rs*rs)/(k*thk);    alpha = sqrt(alf2); 
      Qideal = 2*pi*h*(rs*rs-rw*rw)*(Tw-Tinf); 
% 
%   write base data to output file 
      fid = fopen('cylfina.out','w'); 
      fprintf(fid,'\n *** CYLFINA.OUT ***  Data and Results from CYLFINA.M \n'); 
      fprintf(fid,'\n \nBASIC DATA FOR PROBLEM \n'); 
      fprintf(fid,'Inside and outside radius:  rw =  %6.2f ft \t rs =   %5.2f ft \n',rw,rs); 
      fprintf(fid,'Thickness of fin:           thk = %6.2f ft \n',thk); 
      fprintf(fid,'Inside/ambient temps:       Tw =  %6.2f F  \t Tinf = %5.2f F \n',Tw,Tinf); 
      fprintf(fid,'Heat transfer coeff:        h =   %6.2f Btu/hr-ft^2-F \n',h); 
      fprintf(fid,'Thermal conductivity:       k =   %6.2f Btu/hr-ft-F \n',k); 
% 
%   define solution domain 
      x = linspace(a,b,50);       [nr,nc] = size(x); 
% 
%   evaluate constants in temperature equation  
      a1 = besselk(1,alpha*b);      a2 = besseli(1,alpha*b); 
      b1 = besseli(0,alpha*a);      b2 = besselk(0,alpha*a); 
      denom = a1*b1+a2*b2; 
% 
%   create normalized temp and gradient 
      u = (a1*besseli(0,alpha*x) + a2*besselk(0,alpha*x))/denom; 
      up = alpha*(a1*besseli(1,alpha*x) - a2*besselk(1,alpha*x))/denom; 
% 
%   calc heat transferred (conduction) & fin eff. (edit key parameters) 
      Qactual = -k*(2*pi*a*thk)*(Tw-Tinf)*up(1); 
      Ttip = Tinf + (Tw-Tinf)*u(nc); 
      fineff = Qactual/Qideal; 
      fprintf(fid,'\n \nANALYTICAL SOLUTION RESULTS \n'); 
      fprintf(fid,'Wall Temp (F) =     %8.3f \n',Tw); 
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      fprintf(fid,'Ambient Temp (F) =  %8.3f \n',Tinf); 
      fprintf(fid,'Tip Temp (F) =      %8.3f \n',Ttip); 
      fprintf(fid,'Qideal (BTU/hr) =   %8.3f \n',Qideal); 
      fprintf(fid,'Qactual (BTU/hr) =  %8.3f \n',Qactual); 
      fprintf(fid,'Fin Eff =           %8.3f \n',fineff); 
% 
%   plot normalized profiles 
      nfig = nfig+1;    figure(nfig) 
      subplot(2,1,1) 
      plot(x,u,'LineWidth',2),grid 
      title('CylFinA:  Normalized Temp Profile for Cylindrical Fin (Analytical)') 
      ylabel('temperature') 
      subplot(2,1,2) 
      plot(x,up,'LineWidth',2),grid 
      title('CylFinA:  Normalized Temp Gradient for Cylindrical Fin (Analytical)') 
      xlabel('normalized distance'),ylabel('temp gradient') 
% 
%   close output file 
      fclose(fid); 
% 
%   end simulation % 

 

 

 

Table 8.4  Listing of the output file for Example 8.3. 

 
 *** CYLFINA.OUT ***  Data and Results from CYLFINA.M  
 
  
BASIC DATA FOR PROBLEM  
Inside and outside radius:  rw =    0.08 ft   rs =    0.13 ft  
Thickness of fin:           thk =   0.01 ft  
Inside/ambient temps:       Tw =  200.00 F    Tinf = 70.00 F  
Heat transfer coeff:        h =    20.00 Btu/hr-ft^2-F  
Thermal conductivity:       k =    75.00 Btu/hr-ft-F  
 
  
ANALYTICAL SOLUTION RESULTS  
Wall Temp (F) =      200.000  
Ambient Temp (F) =    70.000  
Tip Temp (F) =       187.784  
Qideal (BTU/hr) =    141.808  
Qactual (BTU/hr) =   132.293  
Fin Eff =              0.933  
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