
 

Mathematical Methods (10/24.539) 

VII.  Power Series Solution Method 

Introduction 

For second or higher order systems, except for some special cases, we have only been able to 
generate analytical solutions for linear constant coefficient systems.  This section of notes 
highlights the Power Series solution scheme, which gives a fairly general procedure to handle 
linear variable coefficient systems.  In practice, however, this method is very tedious to apply 
and the resultant infinite series solutions are often difficult to use in subsequent manipulations 
and analyses.  Sometimes a closed form solution can be written, but this is a special case rather 
than the rule. 

Although not the method of choice in most practical applications, the Power Series solution 
method is the primary tool for solving a wide range of classical second order systems which give 
rise to many of the special functions that are used routinely in engineering design and analysis.  
Thus, we will study this technique as a tool for solving some model second order variable 
coefficient systems, and as background so that the study of Special Functions can be addressed 
in a logical manner (in the next section of these notes). 

After a brief theoretical overview, the material here on the Power Series method focuses on the 
illustration of the method via actual applications to three specific problems, as follows:  

Overview of the Method 

• Some Definitions 

• Computer Evaluation of Infinite Power Series 

• Theorem #1 - Power Series Solution 

• Theorem #2 - Extended Power Series Solution 

• Relationships for y′ and y′′ 

• Solution Outline 

Examples of Analytical Solutions 

• Example 7.1  -  Solve   ( )21 x y '' 2xy ' 2y 0− − + =

• Example 7.2  -  Solve  ( )28x y '' 10xy ' x 1 y 0+ + − =  

• Example 7.3  -  Solve  ( ) ( ) ( )2 2 2 2x 1 x y '' x 1 xy ' x 1 y 0− − + + + =  
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Overview of the Method 

Some Definitions 

The Power Series method assumes homogeneous solutions of the form 

 ( ) ( )m m
m o m o

m 0 m 0
y(x) a x x or y(x) a x x

∞ ∞
r+

= =

= − = −∑ ∑    (7.1) 

where the am coefficients and the r exponent need to be determined as part of the solution 
procedure.  As such, we need to work with infinite series of the form given in eqn. (7.1).  Thus, 
we begin our discussion of the method with a few definitions establishing the proper 
terminology: 

Analytic Function  --  A function is said to be analytic at x = xo if it can be represented by a 
power series of (x - xo) with a radius of convergence R > 0. 

Radius of Convergence  --  R is the radius of convergence if a series converges for x in the range 
defined by ox x R− <  and diverges for x in the range ox x R− > . 

If the function f(x) is analytic at x = xo, then it can be written as 

    (7.2) ( ) ( ) ( )m
m o 0 1 o 2 o

m 0
f (x) a x x a a x x a x x

∞

=

= − = + − + −∑ 2 +

where the radius of convergence is given by 

 
m

m m 1m
m m

1R R
lim a alim

a

     or     1

+→∞
→∞

= =      (7.3) 

As an example, consider the following expansion for e  around the point xx
o = 0, 

 
m 2

x

m 0

x xe 1 x
m! 2!

∞

=

= = + + +∑  

Therefore, 

 ( )
( )

m 1
m

m

1
m 1 !1 a m!a and 1m! a m 1 m! m 1

m!

                + +
= = =

1
=

+ +
 

and the radius of convergence is given by 

 

m

1R 1lim
m 1→∞

= =

+

∞  

Thus this series converges for all values of x. 

Lecture Notes for Math Methods by Dr. John R. White, UMass-Lowell (updated Aug. 2003) 



Math Methods  --  Section VII:  Power Series Solution Method 3

As another example, consider the following expansion, 

 ( )m 3 6 9
3m

m
m 0

1 x x xf (x) x 1
8 64 5128

∞

=

−
= = − + −∑ +  

If we let , then 3t x=

( )
( )

m m m
m m 1

m m 1 m
m 0 m

1 a 8 8f (t) t and
a 88 8 8 8

∞
+

+
=

−
= =∑ 1

= =  

Therefore, 

m 1
m m

1R 8
alim
a

+

→∞

= =  

Thus this particular series converges for t 8 or for x 2     < < . 

Computer Evaluation of Infinite Power Series 

Now, an important consideration is “How do we evaluate and plot infinite series in the form of 
eqn. (7.1)”?  Obviously, we cannot use an infinite number of terms in the expansion.  Thus, one 
concern is associated with determining how many terms to include.  Clearly, if the series is 
convergent, the individual terms must eventually get smaller and smaller and approach zero as  
m → ∞.  Thus, one way to stop the summation is by setting some user-specified error tolerance, 
tol, and then one simply truncates the series when the relative change associated with adding 
another term is less than tol.   

Another concern is computational efficiency, and a brute force evaluation of eqn. (7.1) could be 
very cumbersome if the number of terms in the series is large.  One way to significantly improve 
the overall efficiency is to implement the infinite series as a recurrence relation of the form, 

n
n 1

f (x) T (x)
∞

=

= ∑          (7.4) 

with           (7.5) n 1 n nT r+ = T

where rn is the ratio of the (n+1)th term, Tn+1, to the nth term, Tn.  With this form, one can easily 
and efficiently utilize the following algorithm: 

Algorithm to Evaluate Infinite Power Series 
1. Set maximum number of terms, maxT, and the user-specified tolerance, tol, for stopping the 

calculation. 

2. Initialize the first term in the series  --  set T = T1. 

3. Initialize partial sum after first term  --  set f = T. 

4. while mrerr > tol and n < maxT 

compute r, where rn = Tn+1/Tn   (specific to function of interest) 
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T = r*T     (compute next term in series) 

f = f + T     (update partial sum) 

mrerr = max(abs(T/f))    (compute maximum relative change due to (n+1)th term) 

n = n + 1     (increment counter) 

end 

This algorithm works great, with only minor changes for just about any infinite series of interest!  
The only steps that are case-specific involve initializing the first term, T1, and the computation of 
the ratio, rn = Tn+1/Tn, whose formula must be determined prior to implementation.  For example, 
for the function, f(x), given above, we have 

n 1 3(n 1) n
3n 1

n n 1 n 3n
n

T ( 1) x 8 1r x
T 88 ( 1) x

+ +
+

+
−

= = × = −
−

 

and the first term in the series is T1 = 1. 

Continuing this example, a Matlab program called ps_demo1.m was written to evaluate and plot 
this particular f(x).  The program listing is given in Table 7.1 and a plot of f(x) over the range     
0 < x < 1.8 is shown in Fig. 7.1.  The program logic is quite straightforward and it directly 
follows the algorithm given above.  Over the range given, the function is well behaved and the 
series converges after 46 terms at each x value to within the specified tolerance of 10-6.  Note 
that this is a rather slowly convergent series, and this is not unusual for series that have a finite 
radius of convergence.  Also note that since the radius of convergence for this problem is R = 2, 
as x approaches a value of 2, a continually increasing number of terms will be needed for 
convergence.  If x > 2, then the series expansion simply diverges.  

 

 

 
Fig. 7.1  Plot of f(x) from Matlab program ps_demo1.m. 
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Table 7.1  Listing of Matlab program ps_demo1.m. 

 
% 
%   PS_DEMO1.M   Evaluation of Infinite Power Series Expansions 
% 
%   This demo simply illustrates how to evaluate an infinite series 
%   expansion for a particular function, f(x), as discussed in Section VII 
%   of the Math Methods notes.  The key here is to write the series as a simple 
%   recurrence relation, with term Tn+1 written as a function of term Tn (see  
%   the notes for details). 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all,  close all,   nfig = 0; 
% 
%   define range of x values (be sure to stay within the radius of convergence) 
      x = linspace(0,1.8,50); 
% 
%   NOTE: For this problem the series converges for |x| < 2.  Just to see what happens 
%   when you ignore this fact, you might try setting the maximum x to 2.1 (instead of 1.8). 
% 
%   loop over terms in expansion 
      maxT = 101;  tol = 1e-6;   n = 0;  mrerr = 1.0; 
      T = 1;  f = T;                   % initialize series 
      while mrerr > tol  &  n < maxT 
        r = - (1/8)*x.^3;              % compute r  (this is usually a function of n) 
        T = r.*T;                      % compute Tn+1 
        f = f + T;                     % add Tn+1 to partial sum 
        i = find(f);                   % finds indices of nonzero values of f 
        mrerr = max(abs(T(i)./f(i)));  % compute max relative error 
        n = n+1;                       % increment counter 
      end 
      NT = n;                          % number of terms used in expansion 
% 
%   plot results 
      nfig = nfig+1;   figure(nfig) 
      plot(x,f,'b-','LineWidth',2), grid 
      title(['PS\_Demo1:  Evaluating Infinite Series Expansions (NT = ',num2str(NT), ')']);  
      xlabel('x values'),ylabel('f(x) values') 
% 
%   end of program 
 
 

 

)

 

 

Theorem #1  --  Power Series Solution 

If the functions p(x), q(x), and f(x) in the differential equation 

        (7.6) y ''(x) p(x)y '(x) q(x)y(x) f (x)+ + =

are analytic at x = xo, then every solution, y(x), is analytic at x = xo and it can be represented by a 
power series in powers of x - xo with radius of convergence R > 0.  Therefore, we have a power 
series solution of the form given in the first part of eqn. (7.1), or 

         (7.7) ( m
m o

m 0
y(x) a x x

∞

=

= −∑
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Theorem #2  --  Extended Power Series Solution Method 

The differential equation, 

 
( )2

0 0

b(x) c(x)y ''(x) y '(x) y(x) f (x)
x x x x

+ + =
− −

      (7.8) 

with b(x), c(x), and f(x) analytic around x0 has at least one solution of the form given in the 
second part of eqn. (7.1), or 

         (7.9) ( )m r
m 0

m 0
y(x) a x x

∞
+

=

= −∑

This is referred to as an extended power series with r chosen such that 0a 0≠ .  A second 
independent solution may contain a logarithmic term if the roots are repeated or if they differ by 
an integer. 

Relations for y' and y'' 

A function written in the form of a power series may be differentiated term by term.  Therefore, 
based on the more general representation in eqn. (7.9), one has 

( ) ( )m r 1
m 0

m 0
y '(x) a m r x x

∞
+ −

=

= + −∑        (7.10) 

and 

 ( ) ( ) ( )m r 2
m

m 0
y ''(x) a m r m r 1 x x

∞

0
+ −

=

= + + − −∑      (7.11) 

and this list can be easily extended for higher-order derivatives. 

Basic Solution Outline 

Although somewhat tedious for most practical applications, a systematic procedure for the Power 
Series method can be identified, as follows: 

1.  Expand all the terms in the original differential equation in a power series about the point        
x = x0 (in practice, x0 = 0 in most cases). 

2.  Assume a solution of the form ( )m r
m 0

m 0
y(x) a x x

∞
+

=

= −∑ . 

3.  Substitute the assumed solution and its derivatives into the differential equation from Step 1 
and shift all indices to that for the highest power of x with all the sums beginning with m = 0 
(this is a very important step). 

4.  Collect terms with like powers and equate the coefficients to the right hand side coefficients 
(these will be zero for a homogeneous equation). 

5.  Evaluate r in the original expression such that a0 0≠  (this gives the indicial equation). 
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6.  Obtain a recurrence relation for general term, am. 

7.  If repeated roots are obtained for r or y1(x) and y2(x) are linearly dependent, then one should 
use the variation of parameters (reduction of order ) method to find a second linearly 
independent solution.  In this case, simply let 2y (x) u(x)y (x)1= .  Note that, although 
conceptually straightforward, this can often be quite tedious if y1(x) cannot be written in a simple 
closed form solution. 

This procedure is illustrated in the remainder of this section for a series of three cases.  These 
illustrate the range of typical situations that arise in practical applications.  The following section 
on Special Functions also gives some further examples of the basic Power Series solution 
methodology. 
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Example 7.1  --  Standard Power Series Solution 

Problem Description: 

Solve the following linear variable coefficient second order homogeneous system: 

  ( )21 x y '' 2xy ' 2y 0− − + =

Problem Solution: 

The original equation written in standard form is 

 ( ) ( )2 2
2x 2y '' y ' y 0

1 x 1 x
− +

− −
=

m 2

 

Since the coefficients are analytic at x = 0, we let 

 m m 1
m m m

m m m
y(x) a x y '(x) a mx and y ''(x) a m(m 1)x− −= = =∑ ∑ ∑ −

m 0=

m

 

Then, substitution into the original ODE gives 

  m 2 m m m
m m m

m m m m
a m(m 1)x a m(m 1)x 2 a mx 2 a x−− − − − +∑ ∑ ∑ ∑

Now, we can work on the first term to shift the exponent to the highest power (i.e. xm), and also 
force the summation to begin at m = 0.  Letting p = m-2  or  m = p+2, we have 

  

m 2 p
m p 2

m 0 p 2

2 1
0 1 m 2

m 0

a m(m 1)x a (p 2)(p 1)x

a (0)( 1)x a (1)(0)x a (m 2)(m 1)x

−
+

= =−

− −
+

=

− = + +

= − + + + +

∑ ∑

∑

where a0 and a1 are arbitrary coefficients because the coefficients of the x-2 and x-1 terms are 
already zero. 

Substituting this result into the full balance equation gives 

 [ ]{ } m
m 2 m

m 0
a (m 2)(m 1) a m(m 1) 2m 2 x+

=

+ + − − + − =∑ 0

0

 

or 

  ( )2
m 2 ma (m 2)(m 1) a m m 2+ + + − + − =

and 

 m 2 m m
(m 2)(m 1) (m 1)a a
(m 2)(m 1) (m 1)+

+ − −
= =

+ + +
a  

Therefore, letting m = 0, 1, 2, etc. gives 
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 2 0 4 2 0 6 4
1 1 3 1a a a a a a a
3 3 5 5

= − = = − = = − 0a  

 3 5 3
2a 0 a a 0 etc.
4

= = =  

Therefore, the final solution, y(x), can be written as 

 2 4 6
0 1

1 1y(x) a 1 x x x a
3 5

 = − − − − + 
 

x  

where we have grouped all the terms that multiply the a0 and a1 coefficients separately.  Here one 
recognizes two individual linearly independent solutions to the original ODE, or 

  1 1 2 2y(x) c y (x) c y (x)= +

where c1 = a0 and c2 = a1, and 

 2 4 6
1 2

1 1y (x) 1 x x x and y (x) x
3 5

= − − − − =  

Thus, the solution procedure is complete and the final result is represented as a linear 
combination of two linearly independent solutions, as expected. 
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Example 7.2  --  Extended Power Series Solution (Linearly Independent Solutions) 

Problem Description: 

Solve the following linear variable coefficient system: 

  28x y '' 10xy ' (x 1)y 0+ + − =

Problem Solution: 

The 2nd order ODE in standard form is 

 2
5 4 (x 1) 8y '' y ' y 0
x x

−
+ + =  

In this case, the full coefficients are not analytic at x = 0, but b(x) and c(x) are analytic in the 
general form, 

 2
b(x) c(x)y '' y ' y 0

x x
+ + =  

Therefore, we need the extended power series representation for this problem, with 

 m r
m

m
y(x) a x += ∑  

and the corresponding derivative relationships 

  m r 1 m r 2
m m

m m
y '(x) a (m r)x and y ''(x) a (m r)(m r 1)x+ − + −= + = + + −∑ ∑

Upon substitution, the original ODE becomes 

  m r m r m r 1 m r
m m m

m m m
8 a (m r)(m r 1)x 10 a (m r)x a x a x 0+ + + ++ + − + + + − =∑ ∑ ∑ m

m

+∑

Combining all the coefficients for the terms with xm+r, we let  m = p+1  and  p = m-1, giving 

{ } p r 1 m r 1
p 1 p 1 p 1 m

p 1 m 0
8a (p r 1)(p r) 10a (p r 1) a x a x 0+ + + +

+ + +
=− =

+ + + + + + − + =∑ ∑  

Now removing the p = -1 term from the sum gives 

     [ ] [ ]{ }r m r 1
0 m

m 0
8r(r 1) 10r 1 a x 8(m r 1)(m r) 10(m r 1) 1 a a x 0+ +

+
=

− + − + + + + + + + − + =∑ 1 m

0

 

Requiring that a  gives the indicial equation, 0 ≠

  ( ) ( )28r 2r 1 4r 1 2r 1 0+ − = − + =

or 

 1 2
1 1r and r
4 2

          = = −  
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with a0 being an arbitrary constant.  Note that these values for the roots of the indicial equation 
do not differ by an integer, so we expect that each value of r will lead to a linearly independent 
solution to the original ODE. 

The desired recurrence relationship between am+1 and am can be obtained by setting each 
coefficient of xm+r+1 to zero (because we have a homogeneous system), or 

 [ ]{ } m r 1
m 1 m

m 0
8(m r 1)(m r) 10(m r 1) 1 a a x 0+ +

+
=

+ + + + + + − + =∑  

 { }2 2
m 1 m

m 0
8m 16mr 18m 18r 8r 9 a a x 0+ +

+
=

 + + + + + + = ∑ m r 1  

and for r1 = 1/4, this relationship gives 

 2 m
m 1 m

m 0

9 18m 4m 18m 9 a a x 0
2 2

+ +
+

=

  + + + + + + =    
∑ r 1  

 { } { }2 m r 1
m 1 m m 1 m

m 0 m 0
8m 22m 14 a a x (4m 7)(2m 2)a a x 0+ + + +

+ +
= =

 + + + = + + + = ∑ ∑ m r 1  

Therefore, for r1 = 1/4, we have, 

 
( ) ( )m 1 m

1a a
4m 7 2m 2+

 
= −  + + 

 

Letting m = 0, 1, etc., gives 

 
( ) ( )1 0 2 1 0

1 1 1a a a a a
14 11 4 616

          = − = − = + etc.  

Therefore, since a0 is arbitrary we can write the final form for y1(x) as 

 
1

24
1

1 1y (x) x 1 x x
14 616

 = − + −  
 

A second linearly independent solution is obtained in a similar manner by setting r = r2 = -1/2.  
For this case, after substitution of r2 into the above balance relationships and some careful 
algebraic manipulation, we have 

 { } { }2 m r 1
m 1 m m 1 m

m 0 m 0
8m 10m 2 a a x (4m 1)(2m 2)a a x 0+ + + +

+ +
= =

 + + + = + + + = ∑ ∑ m r 1  

Therefore, for r = -1/2, we have 

 
( ) ( )m 1 m

1a a
4m 1 2m 2+

 
= −  + + 

 

Letting m = 0, 1, etc., gives 

 1 0 2 1 0
1 1 1a a a a a e
2 20 40

          = − = − = + tc.   
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Again, since a0 is arbitrary, y2(x) becomes 

 
1

22
2

1 1y (x) x 1 x x
2 40

−  = − + −  
 

and the final solution is simply a linear combination of the two linearly independent solutions, or 

  1 1 2 2y(x) c y (x) c y (x)= +

which, when written explicitly, gives 

 
1 1

2 24 2
1 2

1 1 1 1y(x) c x 1 x x c x 1 x x
14 616 2 40

+
−  = − + − − + −    




 

 

Lecture Notes for Math Methods by Dr. John R. White, UMass-Lowell (updated Aug. 2003) 



Math Methods  --  Section VII:  Power Series Solution Method 13

Example 7.3  --  Extended Power Series Solution (Dependent Solutions) 

Problem Description: 

Solve the following variable coefficient linear system: 

 ( ) ( ) ( )2 2 2 2x 1 x y '' x 1 xy ' x 1 y− − + + + 0=  

Problem Solution: 

In standard form, the original linear ODE becomes 

 
( ) ( ) ( ) ( )2 2 2 2

2

x 1 x 1 x 1 x 1
y '' y ' y 0

x x

+ − + −
− + =

m =

 

This form is similar to that observed in Example 7.2, thus we can use the extended power series 
method, with 

  m r
m

m
y a x += ∑

and the derivative relations 

  m r 1 m r 2
m m

m m
y ' a (m r)x and y '' a (m r)(m r 1)x+ − + −= + = + + −∑ ∑

Substitution of these expressions into the base ODE gives 
m r 2 m r

m m
m m

m r 2 m r m r 2 m r
m m m

m m m m

a (m r)(m r 1)x a (m r)(m r 1)x

a (m r)x a (m r)x a x a x 0

+ + +

+ + + + + +

+ + − − + + −

− + − + + +

∑ ∑

∑ ∑ ∑ ∑
 

Collecting like terms gives 

 
[ ]

[ ]

m r 2
m

m
m r

m
m

a (m r)(m r 1) (m r) 1 x

a (m r)(m r 1) (m r) 1 x 0                            

+ +

+

+ + − − + +

+ − + + − − + +

∑

∑ =
 

and, with a little algebra, this becomes 

[ ] [ ]m r 2 m r
m m

m m
a (m r 1)(m r 1) x a (m r 1)(m r 1) x 0+ + ++ − + − − + + + − =∑ ∑  

Now, working on the second term, we let m = p+2  or  p = m-2.  Then the second term becomes 

 
[ ] [ ] [ ]

[ ]

p r 2 r r 1
p 2 0 1

p -2

m r 2
m 2

m

a (p r 3)(p r 1) x a (r 1)(r 1) x a (r 2)r x

a (m r 3)(m r 1) x                                                            

+ + +
+

=

+ +
+

+ + + + = + − + +

+ + + + +

∑

∑
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Therefore, for a , the roots of the indicial equation are simply 0 ≠ 0 11,2r = ± , and it should be 
noted that these do differ by an integer  -  thus, one is warned that dependent solutions may 
result.  Also, from the requirement that the coefficient of the xr+1 term be zero, we have a1 = 0, 
since  for either r(r 2)r+ 0≠ 1 or r2 . 

Now to get the desired recurrence relation between am+2 and am, we have 

  2 m
m m 2

m 0
a (m r 1) a (m r 3)(m r 1) x 0+ +

+
=

 + − − + + + + = ∑ r 2

and 

 
2

m 2 m
(m r 1)a a

(m r 3)(m r 1)+
+ −

=
+ + + +

 

Now for r = r1 = 1, we have 

 
( ) ( )

2

m 2 m
ma a

m 4 m 2+ =
+ +

 

Therefore, letting m = 0, 1, 2, etc., gives 

 2 0 3 1
1a 0a 0 a a 0 et

(5)(3)
          = = = = c.  

In fact, for all odd m, am = 0 since a1 = 0, and for all even m > 0, am = 0 since a2 = 0.  Therefore, 
a0 is the only non-zero term.  This gives the simple result that 

  r
1 0y (x) a x (1) x= =

Performing similar manipulations for r = r2 = -1, we have 

 ( )
( ) ( )

2

m 2 m
m 2

a a
m 2 m+

−
=

+
 

but for m = 0, this term becomes undefined (i.e. a ).  This is clearly not allowed.  
Therefore, r = -1 is not a valid root.  Actually, this behavior was not completely unexpected since 
r

2 → ∞

1 and r2 differ by an integer.  In this case, the phenomenon observed here is not uncommon. 

Note:  If r1 – r2 = N where N is an integer, then r1, with r1 > r2, will always lead to a solution.  
The smaller root, r2, might give both linearly independent solutions or it might lead nowhere  --  
that is, the smaller root either gives both solutions or none.  In this case, r2 = -1, was the smaller 
root and it did not give us any information about the solution to the ODE.  Note that often it is 
best to check the smaller root first, since it will either give both solutions of nothing at all.  If 
you check the largest root first, you will always get one solution.  However, upon checking r2, 
you may end up doing much of the same work again (if it leads to valid solutions).  Thus, I 
recommend working with the smallest root first (even though I did not do that here…). 

Now, to get a second linearly independent solution for our current problem, let’s use the 
reduction of order method.  Here, this should be relatively straightforward, since y1(x) could be 
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written as a simple closed form solution, where y1(x) = x.  In particular, to find y2(x), we let 
.  For this specific case, the relationships of interest are 2 1y uy u= = x

'+  2 2 2y ux y ' u ' x u and y '' u '' x u ' u ' u '' x 2u= = + = + + =

Substitution of these expressions into the defining ODE gives 

 ( ) [ ] ( ) [ ] ( )2 2 2 2x 1 x u '' x 2u ' x 1 x u 'x u x 1 ux− + − + + + + 0=

 =

 

Expanding and performing the indicated algebraic operations give 

  5 4 3 2 4 3 2 3x u '' 2x u ' x u '' 2x u ' x u ' x u x u ' xu x u xu 0    + − − − + + + + +    

or 

  ( ) ( )3 2 2 2x x 1 u '' x x 3 u ' 0− + − =

This equation is separable and it can be simplified considerably using a partial fraction 
expansion technique, as follows: 

Separating variables gives 

 ( )
2 2

2
u '' 3 x 3 x A B C
u ' x(x 1)(x 1) x x 1 x 1x x 1

− −
= = = + +

+ − + −−
 

where the A, B, and C constants are determined from 

 
2

x 0

3 x 3A 3
(x 1)(x 1) 1

=

−
= =

+ − −
= −  

 
2

x 1

3 x 2B 1
x(x 1) 2

=−

−
= =

−
=  

 
2

x 1

3 x 2C 1
x(x 1) 2

=

−
= =

+
=  

Therefore, we have the simplified form 

 u '' 3 1 1
u ' x x 1 x 1

−
= + +

+ −
 

This expression can be integrated directly, giving 

 ( ) ( )ln u ' 3ln x ln x 1 ln x 1= − + + + −  

 ( ) ( )
2

3 3
1 xln u ' ln ln x 1 x 1 ln
x x

1 − = + + − =        
 

or 
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2

3
x 1u '

x
−

=  

One final integration gives 

 3 2
1 1 1u(x) dx ln x
x x 2

 = − = +  ∫ x
 

Therefore, the second linearly independent solution becomes 

 2
1y (x) x ln x

2x
= +  

Finally, the linear combination of the two independent solutions gives the desired general 
solution for this problem, or 

 1 2
1y(x) c x c x ln x

2x
 = + + 
 
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