
 

Mathematical Methods (10/24.539) 

IV.  General Initial Value Problems (IVPs) 

Introduction 

Engineering systems are described in mathematical terms via balance equations (energy 
balances, mass balances, force balances, etc.) and these conservation relationships invariably 
lead to differential equations.  For systems with only one independent variable, we only have to 
work with ordinary differential equations (as reviewed in Sections I and II).  However, we often 
have several dependent variables of interest, and these usually give rise to a set of coupled 
ODEs.  The matrix notation and fundamental matrix operations reviewed in Section III give us 
the tools necessary to deal with a coupled system of differential equations in an efficient manner 
(the matrix equations can consist of either algebraic or differential equations). 

In this section we focus on a particular class of problems known as Initial Value Problems 
(IVPs) which occur frequently in practical applications.  This subject was included indirectly as 
part of our discussions in Sections I and II, but here we emphasize how to work with coupled 
systems of first order ordinary differential equations.  We can also solve IVPs written in the form 
of high order ODEs by simply converting the nth order system into n coupled first order 
equations.  This approach gives us a common basis for solving all IVPs with only one 
independent variable (PDEs which deal with two or more independent variables are discussed in 
later sections). 

IVPs that are linear and have constant coefficients can be solved analytically.  This is an 
important class of problems and applications from this set generally have relatively 
straightforward solution schemes that are based on the matrix eigenvalue and eigenvector 
concepts reviewed in Section III.  However, many real engineering systems of interest have 
variable coefficients or nonlinear interactions and, in general, these are not readily amenable to 
analytical techniques.  Thus, this section of notes also emphasizes general numerical schemes 
that can be applied in most situations that arise.  The full treatment of both analytical and 
numerical solution strategies in tandem should give the student all the necessary tools to handle 
just about any situation that would arise in practice.  Detailed illustrative examples of both the 
analytical and numerical solution methods are also given to help develop confidence in this area.  
A good understanding of this subject is essential to engineers and scientists involved in the 
modeling and simulation of physical systems. 

Unlike the first three sections that are included here primarily for review by the individual 
student, as needed, this section will be treated in some detail in this course.  Much of this 
material is not usually covered in most undergraduate courses.  As such, we will spend a little 
more time and work out a few more examples in full detail to make sure you get a good handle 
on this material. 

This section of notes overviews the basic concepts, analytical and numerical solution techniques, 
and the accompanying illustrative IVP examples within several subsections, as follows: 

General Notation for Coupled First Order ODEs 

Conversion of nth Order Systems 

Homogeneous ODEs with Constant Coefficients 
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Non-Homogeneous ODEs with Constant Coefficients 

• Method of Undetermined Coefficients 

• Matrix Diagonalization 

• Variation of Parameters 

Examples of Analytical Solutions 

• Example 4.1  -  Solve  
0 4

y ' Ay A
4 0

     with      
= =  

 
 

• Example 4.2  -  Solve  
4 1

y ' Ay A
1 2

     with      
= =  − 

 

• Example 4.3  -  A Simple Mechanical System with Nonzero F(t) 

• Example 4.3A  -  Solution via Undetermined Coefficients 

• Example 4.3B  -  Solution via Matrix Diagonalization 

• Example 4.3C  -  Solution via Variation of Parameters 

Numerical Solution to General IVPs 

Examples of Numerical Solutions 

• Example 4.4  -  Revisit Example 4.3 from above using Matlab 

• Example 4.5  -  Semi-Batch Chemical Reactor Dynamics 

Note:  The general subject area of Initial Value Problems (IVPs) is also treated in detail in my 
System Dynamics (24.509) course.  A lot of material for this course is available on my website 
at www.profjrwhite.com/courses.htm. 
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General Notation for Coupled First Order ODEs 

Overview 

Systems of first order ODEs occur frequently in applications, especially in connection with the 
study of dynamic systems.  One can also transform an nth order ODE into a coupled set of n first 
order ODEs.  The resultant systems often fall into the class of problems known as Initial Value 
Problems (IVPs).  This is a very important class of problems, and this section will treat both 
analytical and numerical solution techniques for general IVPs.  The State Space Representation 
developed here allows a very general treatment of this subject.  The student is referred to a very 
detailed overview of System Dynamics (24.509) by Prof. J. R. White for a more comprehensive 
treatment of this subject (with lots of good stuff available at www.profjrwhite.com/courses.htm). 

General Notation 

A series of n 1st order ODEs can be written as 

  ( )1 1 1 2 ny ' f t, y , y , y=

  ( )2 2 1 2 ny ' f t, y , y , y=

or for the ith equation, we have 

         (4.1) (i i 1 2 ny ' f t, y , y , y= )
This sequence of equations can be written in vector-matrix form as, 

 (y ' f t, y= )

1

2

i

          (4.2) 

where the single underline notation indicates a column vector (of length n, in this case). 

Linear Systems 

If the functions, fi(t), all happen to be linear, then the above general notation reduces to 

  1 11 1 12 2 1n ny ' a y a y a y g= + + + +

  2 21 1 22 2 2n ny ' a y a y a y g= + + + +

and for the ith equation, we have 

      (4.3) 
n

i i1 1 i2 2 in n i ij j
j

y ' a y a y a y g a y g= + + + + = +∑

Also, in vector-matrix form, this becomes 

 y ' Ay g= +           (4.4) 

This notation is referred to as the standard State Space Representation, where A  is the state 
matrix (notice that a double underline is used to represent a 2-D array), y  is the state vector, and 
g  is the driving or forcing function vector. 
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The homogeneous form of this equation simply sets the forcing function to zero, giving 

 y ' Ay=           (4.5) 

Because the system is linear and homogeneous, linear superposition of the individual solutions is 
used to construct the homogenous solution, or 

 
n

1 2 n ih 1 2 n
i 1

y c y c y c y c y
=

= + + + =
i∑       (4.6) 

 
h 1 2 n

y y y y=  c         (4.7) 

 

11 12 1n 1

21 22 2n 2
h

n1 n2 nn n

y y y c
y y y c

y

y y y c

  
  
  =
  
  
  

Yc



 =




      (4.8) 

where the various forms given here are used interchangeably.  For nontrivial solutions, we know 
that the Wronskian, which is given by the determinant of the Y  matrix, must be nonzero, or 

 
1 2 n 1 2 n

W det y y y y y y 0 = =  ≠      (4.9) 

This says that the n solutions, 
1 2

y , y , y
n
, are linearly independent, and that the n linearly 

independent solutions form a basis of solutions on the interval of interest (one should note here 
that all this discussion is very similar to that given in Section II on Linear ODEs). 

Finally, as in our previous discussions, the solution to the non-homogeneous equation is simply 
the sum of the homogeneous and particular solutions, or 

 
h

y y y= +
p
          (4.10) 

with the unique solution being determined by application of a set of n initial conditions that 
uniquely define the n coefficients in the homogeneous solution. 

Summary 

This section of Math Methods for Engineers (10.539 and 24.539) gives an introduction to both 
analytical and numerical solution techniques for general IVPs.  The analytical solutions are 
restricted to linear constant coefficient systems, and they address both forced and unforced 
situations.  The numerical solutions are more appropriate for general problems (variable 
coefficient and/or nonlinear terms) and we will see that a simple extension of our previous 
discussion of the solution techniques for a single 1st order ODE allows the use of the same ODE 
solution algorithms in Matlab for coupled systems of equations.  A series of analytical and 
numerical examples illustrates how to use these techniques in actual applications. 
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Conversion of an nth Order System into n 1st Order Equations 

Development of the Method 

Consider an nth order system written as 

      (4.11) ( ) ( ) ( )n n 1 n 2
n 1 n 2 1 0y p y p y p y ' p y− −

− −+ + + + + r=

<

Let’s make the substitutions z1 = y, z2 = y′, etc., up to zn = y(n-1).  Then, 

         (4.12) i i 1z ' z for i n          +=

and, from eqn. (4.11), we have 

      (4.13) n n 1 n n 2 n 1 1 2 0 1z ' p z p z p z p z r− − −= − − − − − +

These coupled equations can be put into matrix form, 

 

1 1

2 2

3

0 1 2 n 1
n n

z z 0
0 1 0 0

z z 0
0 0 1 0d zz ' r0

dx
p p p p

1z z−

   

3z

 
      
      
   = = +  
      
      − − − −          

    (4.14) 

The original nth order ODE is now in standard form, where we have n coupled 1st order 
equations. 

An Example 

As an example of using this procedure, consider the following 3rd order system, 

  2 xy ''' 7xy '' 3y ' 2x y sin x e+ + − = −

To convert this to state form, let z1 = y, z2 = y′ = z1′, and z3 = y′′ = z2′.  Therefore, 

  2 x
1 2 2 3 3 3 2 1z ' z , z ' z and z ' 7xz 3z 2x z sin x e= = = − − + + −

or, in matrix form, this becomes 

 ( )
1 1

x
2 2

2
3 3

z 0 1 0 z 0
d z 0 0 1 z 0 sin x e

dx
z z 12x 3 7x

−

      
      = +      
      − −      

−  

Therefore, z ' Az g= + , as desired. 

Note:  The process illustrated above is valid for both linear and non-linear systems.  Linear 
systems were assumed here since we will focus on linear systems for the subsequent discussion 
of analytical solution techniques.  For linear systems, ( )z≠A f .  For nonlinear systems, 

( )A f z=  and the system in state form is usually written simply as ( )z ' f x,z=  [as in eqn. (4.2)]. 
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Homogeneous Linear Systems with Constant Coefficients 

Overview 

A homogeneous system of n linear 1st order equations can be written as 

 y ' Ay=           (4.15) 

Let’s assume that t is the independent variable, giving ( )y y t= , and that A  is a constant 
coefficient matrix.  Now, we recall that the solution for the scalar case was obtained quite 
simply by assuming a solution of exponential form. 

Using a similar approach for the matrix case, we try 

 ty(t) xeλ=           (4.16) 

as the solution to the system of n coupled equations, where x  is a constant vector of length n.  
Upon substitution into the original equation, this becomes 

 t ty ' x e Ay Axeλ λ= λ = =  

or 

 Ax x= λ           (4.17) 

which is referred to as the characteristic equation.  But this is just a standard eigenvalue problem, 
where A I− λ = 0  gives n eigenvalues and ( ) iiA I x 0− λ =  gives an eigenvector, ix , for each 
distinct eigenvalue, . iλ

Distinct Eigenvalues 

If the eigenvalues are distinct, then the eigenvectors are linearly independent, and the n 
individual solutions, 

i
y , form a basis in n-dimensional space, and the full homogeneous solution 

can be written as a linear combination of the basis solutions, or 

 it
ii ii

i i
y(t) c y (t) c x eλ= =∑ ∑         (4.18) 

or 

 it
i i i

i
y(t) x z (t) where z (t) c e          i

λ= ∑ =      (4.19) 

and 

 [ ]

1

2
1 2 n

n

z
z

y x x x Mz

z

 
 
 =
 
 
 

=        (4.20) 

where M  is referred to as the modal matrix and is given by 
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 [ ]1 2 nM x x x =         (4.21) 

Thus, knowledge of the distinct eigenvalues and eigenvectors of the state matrix allows one to 
write the analytical solution, y Mz= , to the original system of first order linear homogeneous 
constant coefficient ODEs.  Example 4.1 gives an illustration of how to use the above procedure 
for the case of distinct roots. 

An Alternate Development for Distinct Eigenvalues 

An alternate approach to finding the solution to the homogeneous equation is to assume a 
solution of the form  

 y(t) Mz(t)=           (4.22) 

where M  is the modal matrix (for distinct eigenvalues).  Upon substitution into the original 
equation, this gives 

 Mz ' AMz=  

Premultiplying by 1M− , we have 

 1z ' M AMz Dz−= =          (4.23) 

where we recognize that a similarity transformation (i.e. the 1M AM−  combination) with the 
modal matrix gives a diagonal matrix, D , whose elements are simply the n distinct eigenvalues 
of the state matrix.  Since the similarity transformation guarantees identical eigenvalues, we have 
an uncoupled system of equations 

 i iz ' Dz which implies z ' z           = i= λ       (4.24) 

and this has the solution 

           (4.25) it
i iz (t) c eλ=

Note that both developments give the same result, as expected [see eqn. (4.19)]! 

Repeated Eigenvalues 

When particular eigenvalues occur with multiplicity m > 1, we cannot generate a complete basis 
from the eigenvectors of the state matrix A .  In this case, we seek a set of linearly independent 
basis vectors as follows: 

Case 1:  The Obvious Choice 

From our experience with the Method of Undetermined Coefficients for linear constant 
coefficient ODEs, if repeated roots occur, a reasonable choice for a second linearly independent 
solution is to simply multiply the known solution, y1(t), by the independent variable, t, to obtain 
y2(t) = ty1(t).  Applying this approach to the present matrix ODE situation gives the following 
result. 

Start with a single solution where µ  is a repeated root (of multiplicity 2), or 
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 t
1,21

y xe with          µ= λ = µ        (4.26) 

and x  is the eigenvector associated with µ .  Now choose y2 as 

 t
2

y xteµ=           (4.27) 

which gives 

 t
2

y ' xte xe  µ µ= µ + t          (4.28) 

From the original differential equation, we also have 

 t
2 2

y ' Ay Axte xteµ= = = µ tµ         (4.29) 

Therefore, equating eqns. (4.28) and (4.29) gives txe 0µ = , which is not possible!  Therefore, the 
choice of 

2
y  is incorrect (which is not uncommon with the Method of Undetermined 

Coefficients)!  If this happens, we simply need to choose another form for 
2

y (t) . 

Case 2:  A Better Choice 

Since our first choice for a second linearly independent solution did not work, let’s try a slightly 
different form for 

2
y (t)  that includes the above guess plus another term containing an unknown 

vector constant.  In particular, given 

 t
1,21

y xe with          µ= λ = µ         (4.30) 

with x  being the eigenvector associated with µ , let’s try  

 ( ) t
2

y xt z eµ= α +          (4.31) 

where both and z  α  are unknowns coefficients that need to be determined. 

Note: For homogeneous equations  is set to unity, but for non-homogeneous equations it must 
be included for generality.  For consistency, we will carry it along in both developments. 

α

Now, taking the derivative of 
2

y (t)  gives 

 t t
2

y ' xte ze xeµ µ= αµ + µ + α tµ         (4.32) 

Also from the defining differential equation, we have 

 ( ) t t
2 2

y ' Ay A xt z e xte Azeµ µ= = α + = αµ + tµ      (4.33) 

Therefore, equating eqns. (4.32) and (4.33) gives 

 ( )Az x z or A I z x= α + µ − µ = α       (4.34) 

This last equation is similar in form to an eigenvalue problem, but here both µ  and x  are known 
(these are eigenvalues and eigenvectors of the original state matrix, A ).  Also, for homogeneous 
equations, α  is really arbitrary (usually set to unity), so that the only unknown here is the vector, 
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z .  Thus, solution of this matrix equation for z  gives the second desired linearly independent 
solution, 

2
y , associated with repeated eigenvalue µ .  Example 4.2 gives an illustration of how to 

use the above procedure for the case of repeated roots. 
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Non-Homogeneous ODEs with Constant Coefficients 

Overview 

The general solution to a non-homogeneous linear system of 1st order ODEs is determined from 
a combination of the homogeneous and particular solutions.  We have just addressed various 
analytical solution techniques for linear constant coefficient homogeneous systems, and saw that 
knowledge of the eigenvalues and eigenvectors of the state matrix is needed to construct these 
solutions.  We now address three techniques for obtaining the particular solution, thus 
completing all the elements needed for the general solution.  In particular, the three methods are 
listed here and described in more detail below: 

Undetermined Coefficients - used with constant coefficient systems with simple forcing 
functions. 

Matrix Diagonalization - used with constant coefficient systems with arbitrary forcing 
functions.  The eigenvalues of the state matrix should be distinct. 

Variation of Parameters - can be used for variable coefficient systems and general forcing 
functions.  However, because of the complexity, the method is only used routinely for constant 
coefficient systems. 

Undetermined Coefficients 

The method of undetermined coefficients is rather straightforward but it is generally useful only 
for constant coefficient linear systems.  In addition, the forcing function vector, g(t) , must be a 
relatively simple function (exponential, polynomial, sinusoid, or a linear combination of such 
functions). 

General rule:  Choose 
p

y (t)  to have the same form as g(t)  and all its derivatives.  Evaluate the 

unknown coefficient vectors within 
p

y (t)  by substitution into the original system of 

inhomogeneous ODEs, and simply equate the coefficient vectors of the like terms on both sides 
of the equations. 

Special rule:  If g  contains a term that includes an eigenvalue of (t) A , then modify 
p

y  to be  

 ( ) t
p

y (t) xt z eλ= α +          (4.35) 

where x is the eigenvector corresponding to λ  (with some unknown normalization). 

Example 4.3A provides an example of the Method of Undetermined Coefficients. 

Matrix Diagonalization 

In our discussion of homogeneous solutions, we saw that, for the case of distinct eigenvalues, 
the homogeneous solution could be written as y Mz= , where [ ]1 2 nM x x x=  was 
identified as the modal matrix.  Now, for the inhomogeneous problem, 

 y ' Ay g= +           (4.36) 
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let’s assume a solution of the same form, or y Mz= .  With this assumption, the original 
equation becomes 

 Mz ' AMz g= +  

and premultiplying by 1M−  gives 

 1 1z ' M AMz M g− −= +  

or 

 1z ' Dz h where D M AM and h M g          =−= + = 1−    (4.37) 

Since D  is a diagonal matrix with the eigenvalues of the state matrix along the diagonal, this last 
equation represents a set of uncoupled first order ODEs which can be written as 

 i i i
d z - z h
dt

λ = i          (4.38) 

This is a single linear ODE for the ith component of z and it has an integrating factor, i- te λ , and a 
general solution 

         (4.39) i it - t
i iz (t) e e h (t)dt cλ λ= ∫ i + 

Note: Leaving out the ci in this expression gives only a particular solution.  However, if the 
integration constant is carried along, one gets the general solution. 

Finally, with zi(t) known, the desired solution to the original ODE is 

 i i
i

y(t) Mz(t) x z (t)= = ∑         (4.40) 

Example 4.3B illustrates the Matrix Diagonalization method. 

Variation of Parameters 

This third method can start with a slightly more general form for the system of 1st order ODEs, 

 y '(t) A(t)y(t) g(t)= +         (4.41) 

In actual application, however, all the practical solution schemes require that the state matrix be 
constant.  For this situation, the homogeneous solution can be written as 

 ih
i

y c= ∑ i
y           (4.42) 

where 
i

y  is an individual solution to the homogeneous equation (assumed to be linearly 
independent), or 
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 1 2 n

1 1

2 2t t t
1 2 nh 1 2 n

n n

c c
c c

y y y y x e x e x e Y

c c

λ λ λ

   
   
     = =      
   
   

c =   (4.43) 

where Y  is a matrix whose columns are the solution vectors, 
i

y (t) . 

Now, for the particular solution, let’s assume a solution of the form 

 
p

y Y= u           (4.44) 

where we have replaced the constant vector with a vector of unknown functions (to be 
determined). 

Noting that Y Y(t= ) , upon substitution we have 

 Y ' u Yu ' AYu g+ = +         (4.45) 

Note also that, from the homogeneous solution, we have 

 
1 2 n 1 2 n

y ' y ' y ' Ay Ay Ay or Y ' AY   = =      (4.46) 

Therefore, canceling the terms in eqn. (4.45) associated with this equality, gives 

 Yu ' g=           (4.47) 

or 

 1u ' Y g−=           (4.48) 

and 

 1u(t) Y ( )g( )d c−= τ τ τ∫ +         (4.49) 

Note:  As before, if c = 0 in the above expression, then 

 1
p

y Yu Y Y ( )g( )d−= = τ τ∫ τ         (4.50) 

If, however, c , we get the general solution, 0≠

 1y(t) Yc Y Y ( )g( )d−= + τ τ∫ τ         (4.51) 

Example 4.3C offers an illustration of the Variations of Parameters method. 
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Example 4.1  --  Analytical Solution Methods (Homogeneous System with Distinct Roots) 

Problem Description: 

Solve the following set of 1st order linear constant coefficient ODEs: 

  1 2 2y ' 4y and y ' 4y          = = 1

Problem Solution: 

1.  First, let’s write the equations in matrix form, or 

 
0 4

y ' y
4 0

 
=  

 
 

Therefore, we have a homogeneous matrix equation, y ' Ay= , where the state matrix is 

 
0 4

A
4 0

 
=  

 
 

2.  The eigenvalues of the state matrix are given by 

 ( ) ( )24
A I 16 4 4

4
−λ

− λ = = λ − = λ − λ + =
−λ

0

4

 

or 

  1 24 and          λ = − λ =

and these are indeed distinct so the eigenvectors will be linearly independent.  The eigenvectors 
are determined from ( ) iiA I x− λ = 0 . 

For , this gives .  Therefore, 1 4λ = − 1 2 1 24x 4x 0 and 4x 4x 0    + = + = 1
1

x
1

 
=  − 

 is a valid 

solution for the first eigenvector (to within some arbitrary constant). 

Similarly for , we get  or,  2 4λ = 1 2 1 24x 4x 0 and 4x 4x 0    − + = − = 2
1

x
1

 
=  

 
 

3.  Now, with known (distinct) eigenvalues and eigenvectors, the homogeneous solution can be 
written as 

 1 2t t
1 21 2y(t) c x e c x e Mzλ λ= + =  

 
4t 4t 4t

1 1 2
4t 4t 4t

2 1

c e c e c e1 1
y(t)

1 1 c e c e c e

− −

−

   + 
= =   − − +       2





 

or 

  4t 4t 4t 4t
1 1 2 2 1 2y (t) c e c e and y (t) c e c e− −= + = − +
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Example 4.2  --  Analytical Solution Methods (Homogeneous System with Repeated Roots) 

Problem Description: 

Solve the following set of 1st order linear constant coefficient ODEs: 

  1 1 2 2 1y ' 4y y and y ' y 2y          = + = − + 2

Problem Solution: 

1.  First, let’s write the equations in matrix form, or 

 
4 1

y ' y
1 2

 
=  − 

 

Therefore, we have a homogeneous matrix equation, y ' Ay= , where the state matrix is 

 
4 1

A
1 2

 
=  − 

 

2.  The eigenvalues of the state matrix are given by 

 ( ) ( ) 24 1
A I 4 2 1 8 6 1

1 2
− λ

− λ = = − λ − λ + = − λ + λ + =
− − λ

0

0

 

or 

  ( )22 6 9 3λ − λ + = λ − =

which gives , and we have a case with repeated roots.  In this case, we only have one 
solution, 

1,2 3λ =

 3t
11

y x e=  

where the eigenvector is determined from ( ) 11A I x 0− λ = . 

For , this gives .  Therefore, 1 3λ = 1 2 1 2x x 0 and x x    + = − − = 0 1
1

x
1

 
=  − 

 is a valid solution 

for the first eigenvector (to within some arbitrary constant). 

3.  Now, we need to determine a second linearly independent solution.  Based on our previous 
development, let’s choose 

2
y  as 

 ( ) 3t
12

y x t z= α + e  

where  and 1α = z  is determined by 

 ( )A I z− µ = αx  

which, in this case, becomes 
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 ( ) 1
A 3I z

1
 

− = α  − 
 

or 

  1 2 1 2z z 1( ) and z z 1( )          + = α − − = − α

which gives 

3t 3t
2

1 1
z and y te

0 1
               

= =     −     

1
e

0
+ . 

Note that this solution is just one possible choice since there are an infinite number of solutions 
to this underdetermined system.  This was expected since the matrix operator ( )A I− µ z  is 
singular  --  since µ  is an eigenvalue of A . 

4.  Now putting the two linearly independent solutions together gives the final solution, or 

 ( ) 3t 3t
1 2 1 2 21 2

1 1
y c y c y c c t e c e

1 0
   

= + = + +   −   
 

or 

 [ ] 3t
1 1 2y (t) c c (1 t) e= + +  

 [ ] 3t
2 1 2y (t) c c t e= − +  

This form of the solution (with terms containing  and ) is exactly what we would expect 
for a linear 2

3te 3tte
nd order system with repeated roots! 
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Example 4.3  --  Analytical Solution Methods (Non-Homogeneous System) 

A Simple Mechanical System (One Degree of Freedom) 

Problem Development: 

Consider a simple mechanical system consisting of a spring, mass, and dashpot (for viscous 
damping).  Let y(t) be the displacement from equilibrium in the downward direction.  Therefore, 

 
2

o2
d y dym mg ks ky c f

dtdt
= − − − + (t)  

In words, this says that the total force is the sum of the forces due to gravity, the restoring force 
of the linear spring, [-k(so + y)], the viscous damping force, and any external force acting on the 
mass, where so is the initial stretch due to the mass being attached to the unstretched spring, as 
shown in the sketch given below: 

 
At equilibrium with no applied force, we have y(t) = 0, thus mg = kso.  This says that the gravity 
force is exactly cancelled by the spring force associated with stretch so.  Therefore, the defining 
equation for the system becomes 

 
2

2
d y dym c ky f

dtdt
+ + = (t)

'

 

As a specific case, let m = 1, k = 2, and c = 3 (with appropriate units) and assume that the forcing 
function is given by f(t) = 10e-2t.  Also choose y(0) = 0 and y′(0) = -5 as initial conditions, 
making the problem very specific. 

Problem Solution: 

As the first step in the solution, let’s convert this problem to state form (two coupled 1st order 
equations).  Letting 1 2x y and x y    = =  give 

 1 2 2 1 2
k c 1x ' x and x ' x x f (t)
m m m

= = − − +  

as the defining equations.  In matrix form, we have 
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 1 1

2 2

0 1 0x xd f (t)k c 1x xdt
m m m

         = +      − −      

 

which corresponds exactly to the desired standard state form. 

With the numerical data given above, the problem can be written as 

 1 1 2t
1 2

2 2

x x0 1 0d 10e with x (0) 0 and x (0) 5
x x2 3 1dt

−      
= + =      − −      

= −  

This is solved using three different methods in the following examples.  In Example 4.3A, the 
Undetermined Coefficients method is used to find a solution.  Example 4.3B uses the Matrix 
Diagonalization method and the Variation of Parameters method is illustrated in Example 4.3C.   
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Example 4.3A  --  Undetermined Coefficients 

Problem Description: 

Solve for y(t)  using the method of undetermined coefficients given 

 d y Ay g
dt

= +  

with 

 2t 2t0 1 0
A and g e

2 3 10
          be− −   

= =   − −   
=  

Problem Solution: 

1.  First, let’s find the homogeneous solution.  Setting the right hand side to zero gives 

 y ' Ay=  

Now let ty xeλ= , which gives, 

 t tx e Axeλ λλ =   

or 

 ( )A I x− λ = 0  

which is a standard eigenvalue problem.  Evaluating the eigenvalues, one has 

 ( ) ( ) (21
A I 3 2 3 2 2 1

2 3
−λ

− λ = = λ λ + + = λ + λ + = λ + λ +
− − − λ

)

1

 

or 

  1 22 and          λ = − λ = −

The eigenvector associated with  is given by 1 2λ = − ( ) 11A I x 0− λ = , or 

  1

2

x2 1 0
x2 1 0

  
=  − −   

 
 
 

or 

  1 2 1 22x x 0 and 2x x 0          + = − − =

Therefore, 1
1

x
2

 
= − 

  is a valid solution for the first eigenvector. 

Similarly, for , we have 2 1λ = −
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  1

2

x1 1 0
x2 2 0

  
=  − −   

 
 
 

or 

  1 2 1 2x x 0 and 2x 2x 0          + = − − =

and 2
1

x
1


= − 


  is the valid eigenvector for this case. 

With the distinct eigenvalues and eigenvectors known, we can simply write the homogeneous 
solution as 

 it
iih

i
y c x eλ= ∑  

 
2t t

1 1 2
h 2t t

2 h 1 2

y c e c e
y

y 2c e c e

− −

− −

 + 
= =    − −    

 

2.  Now for the particular solution, let’s use the Method of Undetermined Coefficients.  Because 
the forcing function is a simple exponential, one would generally pick a particular solution of the 
form, 

 2t
p

y ze−=  

Normally this would be correct but, because of the specific form of the homogeneous solution 
for this problem, this choice won’t work (because of the e-2t term in the homogeneous solution).  
Therefore, we let 

 ( ) 2t
1p

y x t z e−= α +  

Then, upon substitution, we have 

 ( ) ( )2t 2t 2t
1 1 12 x t x 2z e A x t z e be− −− α + α − = α + + −  

Canceling the e-2t and noting that 1 1A x t 2 x tα = − α , gives 

 1x 2z Azα − = + b  

or 

 ( ) 1A 2I z x b+ = α −  

Our goal now is to evaluate this expression for the unknowns, and z α .  Substituting the 
numerical values gives 

  1

2

z0 1 2 0 1 0
z2 3 0 2 2 10

         
+ = α         − − −        


− 


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  1

2

z2 1
z2 1 2 10

α   
=   − − − α −   





0where we see that , or 2 1−α = − α − 10α = − , gives a consistent, linearly dependent, set of 
equations.  This is expected since the ( )1A I− λ  operator is singular, which implies redundancy 
in the equations.  Writing the equations explicitly gives 

  1 2 1 22z z and 2z z 2 10          + = α − − = − α −

and with , we have 10α = −

  2 1z 10 2= − − z

This gives an infinite number of solutions.  Let’s choose z1 = -5 which gives z2 = 0, and 
[ ]Tz 5 0= −  becomes a valid result for the unknown coefficient vector. 

Thus, the particular solution is given by 

 ( ) 2t 2t 2t
1p

1 5 10t 5
y x t z e 10t e e

2 0 20t
− −− − −      

= α + = − + =      −      
−  

3.  The general solution is formed as the sum of the homogeneous and particular solutions, or 

 
h p

y(t) y (t) y (t)= +  

 
( )
( )

2t t
1 2

2t t
1 2

c 10t 5 e c e
y(t)

2c 20t e c e

− −

− −

 − − +
=  

− + −  
 

4.  Finally, the unique solution is obtained by imposing the specific initial conditions for this 
case, or 

 ( ) ( )
( )

1 1

2 1

y 0 c 5 c0
y 0

y 0 2c c5
− +    

= = =     − −−    

2

2

0

 

Therefore, from the first equation, we have 

  1 2c 5 c= −

and putting this into the second equation gives 

  ( )2 22 5 c c 5− − − = −

or 

  2 1c 5 and c          = =

Therefore, the final analytical solution for this problem is  

 
( ) 2t t

2t t

10t 5 e 5e
y(t)

20te 5e

− −

− −

 − + +
=  

−  
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Example 4.3B  --  Matrix Diagonalization 

Problem Description: 

Solve for y(t)  using the matrix diagonalization method given that 

 d y Ay g
dt

= +  

with 

 2t 2t0 1 0
A and g e

2 3 10
          be− −   

= =   − −   
=  

Problem Solution: 

In this example we want to use the matrix diagonalization method for solving the state space 
equations.  Therefore, we assume a solution of the form 

 y Mz    =  

Substitution of this into the defining equation gives (see above development) 

  i it - t
i iz (t) e e h (t)dt cλ λ = + ∫ i

where 1h M g and M    −=  is the modal matrix. 

Also from Example 4.3A, we have 

 1 2
1 1

2 and 1 and M
2 1

                     
λ = − λ = − =  − − 

 

1.  Let’s construct the above solution very systematically.  First, 1M−  is given by 

 
T

1 1 2 1 11M
1 1 2 11 2

− − −  
= =  −− +   

− 



 

Therefore, h is simply 

 1 2t 2t1 1 0 10
h M g e e

2 1 10 10
− − −− − −     

= = =     
     

 

2.  Now we can evaluate the functions, zi(t), or, 

  ( ) ( ) ( )2t 2t 2t 2t 2t
1 1 1z (t) e e 10e dt c e 10t c c 10t e− − − = − + = − + = −   ∫ 1

−

and 

 ( ) ( )t t 2t t t 2t
2 2 2z (t) e e 10e dt c e 10e c 10e c e− − − − −   = + = − + = −   ∫ t

2
−+  

3.  Now multiplying z by the modal matrix gives 
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( ) ( )

( )

2t t2t
1 21

2t t2t t
1 22

c 10 10t e c ec 10t e1 1
y Mz

2 1 2c 20t 10 e c e10e c e

− −−

− −− −

   − − +− 
= = =    − − − + + −− +        

  

4.  Finally, applying the initial conditions gives the unique solution, or 

 1 1

2 1

y (0) c 10 c0
y(0)

y (0) 2c 10 c5
− +   

= = =    − + −−   
2

2





5

 

Therefore, from the first equation, we have 

  1 2c 10 c= −

and putting this into the second equation gives 

  2 22(10 c ) 10 c 5− − + − = −

or 

  2 1c 5 and c          = =

Therefore, the final analytical solution for this problem is  

 
( ) 2t t

2t t

10t 5 e 5e
y(t)

20te 5e

− −

− −

 − + +
=  

−  
 

which is exactly the same solution as found for Example 4.3A (as it should be). 
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Example 4.3C  --  Variation of Parameters 

Problem Description: 

Solve for y(t)  using the variation of parameters method given that 

 d y Ay g
dt

= +  

with 

 2t 2t0 1 0
A and g e

2 3 10
          be− −   

= =   − −   
=  

Problem Solution: 

Using the results developed previously for the variation of parameter method, we have 

 1 21 t t
1 2y(t) Y c Y ( )g( )d where Y x e x e− λ λ   = + τ τ τ =   ∫  

and, for this case, this matrix can be written explicitly as (see Example 4.3A), 

 
2t t

2t t

e e
Y

2e e

− −

− −

 
=  

− −  
 

1.  Again, proceeding systematically to evaluate the above expression, let’s first find 1Y− .  This 
relation is given by 

Tt 2t t t 2t 2
1 3t

3t 3t t 2t 2t 2t t t

e 2e e e e e1Y e
e 2e e e 2e e 2e e

− − − −
−

− − − − − −

    − − − −
= = =    

− + −        

t −



 

and just to check this result we verify that 1Y Y I− = , or 

 
2t 2t 2t t

1
t t 2t t

e e e e 1
Y Y

0 12e e 2e e

− −
−

− −

   − − 0 
= =     − −        

 

2.  Now, the function 1g−Y  can be written as 

 
2t 2t

1 2t
tt t

10e e 0
Y g e

10 10e2e e
− −

−

− − −   
= =    

     
 

3.  Performing the integrals gives 

 1
t

10t
Y (t)g(t)dt

10e
−

−

− 
=  − 

∫  

and premultiplying by Y  and adding the homogeneous solution gives the general solution, or 
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( )
( )

2t t2t t
1 1 2

t 2t t2t t
2 1 2

c 10t c 10 10t e c ee e
y(t)

c 10e 2c 20t 10 e c e2e e

− −− −

− − −− −

 −  − − + 
= =     − − + + −− −       

 

Note that this is the same solution as derived in Example 4.3B. 

4.  As before, we complete this problem by applying the initial conditions to get the unique 
solution, or 

 ( ) ( )
( )

1 1

2 1

y 0 c 10 c0
y 0

y 0 2c 10 c5
− +    

= = =     − + −−    

2

2

5

 

Therefore, from the first equation, we have 

  1 2c 10 c= −

and putting this into the second equation gives 

  ( )2 22 10 c 10 c 5− − + − = −

or 

  2 1c 5 and c          = =

Therefore, the final analytical solution for this problem is  

 
( ) 2t t

2t t

10t 5 e 5e
y(t)

20te 5e

− −

− −

 − + +
=  

−  
 

which is exactly the same solution as found using the method of undetermined coefficients and 
the matrix diagonalization method (see Example 4.3A and Example 4.3B). 
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Numerical Solution of General IVPs 

The analytical solution methods just discussed for treating systems of first order ODEs are 
indeed important and they represent powerful tools that can help solve many problems.  
However, in almost all cases, these analytical solution methods are restricted to linear time 
invariant systems, and from practical concerns, they are only useful for relatively low order 
systems (usually 2 or 3 equations).  As we saw previously for the case of a single first order 
equation, when the analytical methods become tedious, or in some cases, completely 
inappropriate, we simply turn to numerical techniques for solving the desired equations.  And, of 
course, a wide range of numerical methods incorporated within various computer simulation 
tools is the standard methodology used in industry for solving real engineering problems. 

Fortunately we already know how to numerically integrate first order equations of the form 
 using adaptive step control techniques.  In fact, both the one-step Runge-Kutta 

formulas and the Adams-Bashford-Moulton multistep method were discussed in some detail, and 
the specific implementation of the RK23 method within the Matlab ode23 routine has been 
described and illustrated via several examples.  The reader is encouraged to review this material 
as needed (see Section I - Numerical Solution Methods). 

y ' f (x, y)=

A convenient feature of the numerical methods discussed previously is that they can also be used 
to solve the general IVP involving n equations and n initial conditions.  In this case, one usually 
starts with a system of coupled 1st order equations (recall that an nth order system can always be 
converted into a set of n 1st order equations) written in vector form, or 

 y ' f (x, y)=           (4.52) 

where the underline notation simply implies vector quantities of length n.  Note that this notation 
is almost identical, except for the underlines, to that for the single first order equation.  Thus, all 
of our previous development for a single equation can be duplicated for the case of n coupled 
equations by simply including the vector notation within the development. 

For example, the integration formula for the first order Euler method for a single ODE was 
derived previously as 

          (4.53) i 1 i i iy y hf (x , y+ = + )

where h is the step size.  For the general case of n equations, the Euler integration formula is 

 ii 1 i i
y y hf (x , y

+
= + )          (4.54) 

Thus, everything we did as review in Section I is still applicable for the general case by simply 
converting to vector notation.  Also, because of the base matrix formalism built into the Matlab 
package, the Matlab ODE solvers used previously are already set up to handle vector functions.  
Thus, we already know how to numerically solve general initial value problems (IVPs)! 

The only remaining point is to illustrate this general capability via example.  Two such cases 
have been formulated in Example 4.4 and Example 4.5.  These examples show the essential 
features of using ode23 for solving general IVPs within the Matlab environment.  The student is 
encouraged to study these carefully, since this is such an important class of problems that occurs 
in all fields of engineering design and analysis. 
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Example 4.4 -- Numerical Solution Methods (Example 4.3 Revisited) 

Problem Description: 

Solve the following coupled system of equations using Matlab’s ode23 routine and compare the 
numerical solutions to the analytical solution from Example 4.3 - Analytical Solution Schemes: 

 1 1

2 2

0 1 0x xd f (t)k c 1x xdt
m m m

         = +      − −      

 

Let m = 1, k = 2, and c = 3 (with appropriate units) and f(t) = 10e-2t.  Also assume the initial 
conditions are x1(0) = 0 and x2(0) = -5. 

Problem Solution: 

1.  The unique solution for this problem was derived above as (see Ex. 3  -  Analytical Examples) 

 
( ) 2t t

2t t

10t 5 e 5e
x(t)

20te 5e

− −

− −

 − + +
=  

−  
 

This vector function was evaluated and plotted over the range t = [0, 2] in Matlab. 

2.  A numerical solution to the given IVP was obtained using the ode23 numerical integration 
routine in Matlab.  The standard state space form is used, and the forcing function is evaluated in 
a separate routine, making it rather easy to modify the input function if desired. 

 

 

 
Fig. 4.1  Comparison of numerical and analytical solutions for Example 4.4. 
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3.  The numerical and analytical solutions are compared in Fig. 4.1.  Clearly the numerical and 
analytical solutions show good agreement.  These results were obtained using the main Matlab 
file ivpnex1.m.  This script file also refers to function files ivpnex1a.m and ivpnex1b.m, which 
perform the function evaluations for ode23 and evaluate the forcing function for any value of the 
independent variable, respectively.  The three Matlab files written to solve this problem are 
listed in Table 4.1.  The reader is encouraged to study these files as needed.  These are pretty 
basic but, if you are new to Matlab, you should take some time to make sure you fully 
understand the details!  This sequence of Matlab m-files represents a good example of solving 
IVPs written in state space form and of using Matlab function files for evaluating various 
functions. 

 

Table 4.1  -  Listing of Matlab files for Example 4.4. 

 
% 
%   IVPNEX1.M    Simulation of a Simple Mechanical System 
%       (Example for Numerical Integration of System of ODEs (IVPs)) 
% 
%   This is a sample problem that considers a simple mechanical system  
%   consisting of a mass, spring, and dashpot (to represent viscous 
%   damping).  The system also contains a specified forcing function, f(t).   
%   A force balance on the system gives the following second order ODE: 
%       my''(t) + cy'(t) + ky(t) = f(t) 
% 
%   For specificity, let 
%       m =1,   k = 2,   c = 3,   and   f(t) = 10exp(-2t) 
%   and for initial conditions, let 
%       y(0) = 0   and   y'(0) = -5 
%   all with appropriate units, of course. 
% 
%   This can be put in matrix form by letting z1 = y  and  z2 = y', giving 
%       z1'  =   z2 
%       z2'  =  -(k/m)z1 - (c/m)z2 + (1/m)f(t) 
%   or 
%       z' = A*x + B*u   (where A & B are state space matrices and u is input)) 
%        
%   The goal of this example is to illustrate how to solve problems of this  
%   type within Matlab using the ODE23 function (uses the RK23 method).  The  
%   numerical solution is also compared to an analytical solution derived in the  
%   course Lecture Notes for 10/24.539. 
% 
%   This file also uses the following two files: 
%       ivpnex1a.m - function file for ode23 
%       ivpnex1b.m - function file for generating value of forcing function 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003). 
% 
 
% 
%   getting started 
      clear all, close all,  nfig = 0; 
% 
%   setup problem specific data 
      m = 1;   k = 2;   c = 3; 
      yo = 0;   ypo = -5; 
% 
%   setup constant matrices for state space formulation 
      AA = [0 1; -k/m -c/m];   BB = [0 1/m]'; 
% 
%   time domain of interest 
      to = 0;   tf = 3;   te = linspace(to,tf,61);    
% 
%   evaluate and plot forcing function over interval 
      ff = ivpnex1b(te); 
      nfig = nfig+1;   figure(nfig) 
      plot(te,ff,'r-','LineWidth',2) 
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      title('IVPnex1:  Forcing Function Used in Simulation') 
      xlabel('time'),ylabel('f(t)'),grid 
% 
%   solve 2x2 system of ODEs (Initial Value Prob -- IVP) 
      zo = [yo ypo]';      
      tol = 0.001;    options = odeset('RelTol',tol); 
      [t,z] = ode23('ivpnex1a',[to tf],zo,options,AA,BB); 
% 
%   exact solution (from lecture notes) 
      te = te';    ze = zeros(length(te),2); 
      ze(:,1) = -(10*te + 5).*exp(-2*te) + 5*exp(-te); 
      ze(:,2) =  20*te.*exp(-2*te) - 5*exp(-te); 
% 
%   compare exact and numerical solution  
      nfig = nfig+1;   figure(nfig) 
      plot(te,ze(:,1),'-g',te,ze(:,2),'-g',t,z(:,1),'or',t,z(:,2),'or','LineWidth',2) 
      title('IVPnex1:  ODE23 (pts) vs Exact Solution (line) for Mechanical System') 
      xlabel('time'),ylabel('position and velocity'),grid 
      gtext('z1(t)'),gtext('z2(t)') 
% 
      range = axis; 
      xt = range(1) + 0.52*(range(2)-range(1)); 
      yt1 = range(3) + 0.13*(range(4)-range(3));  
      yt2 = range(3) + 0.08*(range(4)-range(3)); 
      text(xt,yt1,'z1(t) - position of mass versus time') 
      text(xt,yt2,'z2(t) - velocity of mass versus time') 
% 
%   end of problem 
 
 
 
 
% 
%   IVPNEX1A.M  Function evaluation for ODE step in IVPNEX1.M  
%      
%   given differential eqn.   z' = Az + g   where g = B*u 
% 
%   uses function file ivpnex1b.m to evaluate forcing function at time t 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003). 
% 
      function zp = odefile(t,z,flag,AA,BB) 
      u = ivpnex1b(t);   g = BB*u; 
      zp = AA*z + g; 
% 
%   end of function 
 
 
 
 
 
% 
%   IVPNEX1B.M  Function file to evaluate forcing function at any t 
%      
%   given function:  f(t) = 10*exp(-2t) 
% 
%   this file is used by ivpnex1.m and ivpnex1a.m 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003). 
% 
      function f = funfile(t) 
      f = 10*exp(-2*t); 
% 
%   end of function 
% 
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Example 4.5  --  Numerical Solution Methods (Chemical Reactor Dynamics) 

Semi-Batch Chemical Reactor Dynamics 

Problem Description: 

Model, simulate, and analyze the dynamics of a 3-component semi-batch chemical reactor (see 
specific description below).  Assume the following data in your analysis: 

  o o AoQ 10.0 liters / sec V 50.0 liters C 1.0 gmoles / liter                             = = =

where Qo, Vo, and CAo represent the inlet flow rate, initial reactor volume, and feed concentration 
of component A, respectively.  Also assume that the rate constants for the various processes are 

  1 2 3k 0.1 k 0.5 and k 0.05= = =

C

B=

Determine the concentration of components A, B, and C versus time.  What is the maximum 
concentration of component B?  How long does it take to reach this state? 

Problem Solution: 

Model Development 

Consider the kinetics of a 3-component semi-batch chemical reactor with the following reaction 
scheme, 

  
1

3

2

r
r

r

A B
→

→
←

where the rates are proportional to the component concentration or the square of the 
concentration, as follows: 

  2 2
1 1 A 2 2 B 3 3r k C r k C and r k C                    = =

with the concentrations given in gmoles/liter and the reaction rates in gmoles/liter-sec. 

Assume that the above reactions occur in a semi-batch reactor  --  that is a reactor which has 
flow in, but no flow out of the system.  Initially, the reactor is filled to volume Vo with an inert 
liquid.  At time zero, a stream containing component A with concentration CAo is fed to the 
reactor at a constant flow rate Qo.  For this situation, a mole balance on each component gives 

 A o Ao R 1 2
d n Q C V ( r r
dt

= + − + )  

 B R 1 2 3
d n V (r r r
dt

= − − )  

 C R 3
d n V (r
dt

= )  

where ni(t) is the number of  moles of component i at any time t and VR(t) is the reactor volume 
versus time and is given by 
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  R oV (t) V Q t= + o

Using the definition of concentration, Ci = ni/VR, the above kinetics equations can be written in 
final form as 

 21
A o Ao A 2

R

d kn Q C n k n
dt V

= − + B  

 2 21 3
B A 2 B

R R

d k kn n k n
dt V V

= − − Bn  

 23
C B

R

d kn n
dt V

=  

where nA = nB = nC = 0 at t = 0.  These equations, along with the expression for VR(t), represent a 
set of simultaneous, first-order, nonlinear, variable coefficient equations that describe the 
dynamics of this particular chemical system. 

Solution Method 

This problem is solved numerically using Matlab.  The program logic utilized is outlined as 
follows: 

1.  Specify problem data. 

2.  Use the ode23 routine in Matlab to solve for the number of moles of each component versus 
time, ni(t). 

3.  Compute the reactor volume and convert the number of moles to concentration, Ci = ni/VR. 

4.  Plot the component concentrations versus time and identify the time and magnitude of the 
peak concentration of component B.  In particular, component B reaches a fairly broad peak 
between 50-60 seconds after startup and has a magnitude of slightly over 0.3 gmoles/liter at 
maximum concentration.  The Matlab plot for Ci(t) is shown in Fig. 4.2. 

The Matlab Files 

The data for this example were generated with the main Matlab m-file semibr.m.  This file also 
requires the ODE function file semibra.m.  These files are listed in Table 4.2.  This set of 
Matlab m-files illustrates the solution procedure for a realistic IVP.  In particular, this problem 
includes a good example of the numerical solution scheme for a coupled set of nonlinear, 
variable coefficient, first order differential equations within the Matlab environment.  This 
class of IVPs is very common in a wide range of engineering disciplines.  Thus, a full 
understanding of this problem should aid in the solution of similar problems in the future. 
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Fig. 4.2  Component concentrations generated by the semibr.m program. 

 

Table 4.2 - Listing of the semibr.m and semibra.m Matlab files. 

 
%                                                                                
%   SEMIBR.M    Simulation of the Dynamics of a Semi-Batch Chemical Reactor 
%                    (A Typical Initial Value Problem)                           
%                                                                                
%   This project involves the modeling/solution of the dynamics of a semi-batch 
%   chemical reactor.  A semi-batch reactor is one that has flow in, but no flow out. 
%   The specific system of interest has three components and the reactor is fed 
%   with constant flow and feed concentration of species A.  Components B and C  
%   are formed from component A. 
% 
%   The defining eqns for the number of moles of each component are: 
%      dNA/dt = Qo*CAo - (k1/VR)*NA^2 + k2*NB 
%      dNB/dt = (k1/VR)*NA^2 - k2*NB - (k3/VR)*NB^2 
%      dNC/dt = (k3/VR)*NB^2 
%   with 
%      VR = Vo + Qo*t 
%   and initial conditions 
%      NAo = NBo = NCo = 0    (all components initially at zero concentration) 
% 
%   These equations will be solved for a specified set of data.  The goal is 
%   to determine the concentrations versus time, Ci = Ni/VR, with particular 
%   focus on the time when the second component (B) reaches its maximum 
%   concentration. 
% 
%   also see SEMIBRA.M - ODE23 function file 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all, close all, nfig = 0; 
% 
%   generic and plant specific data 
      Qo = 10.0;      % inlet flow rate (liters/sec) 
      Vo = 50.0;      % initial volume of semi-batch reactor (liters) 
      CAo = 1.0;      % concentration of component A in feed (gmole/liter) 
      K1 = 0.1;  K2 = 0.05;  K3 = 0.05;  % rate constants  
% 
%   now simulate system for several seconds (past peak in concentration in B) 
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      to = 0;    tf = 100;    % time interval  
      no = [0 0 0]';          % initial conditions  
      tol = 0.001;    options = odeset('RelTol',tol); 
      [t,n] = ode23('semibra',[to tf],no,options,Qo,Vo,CAo,K1,K2,K3);  
% 
%   compute concentrations 
      VR = Vo + Qo*t;    C = zeros(size(n)); 
      for i = 1:3    C(:,i) = n(:,i)./VR;    end 
% 
%   plot primary results  
      nfig = nfig+1;  figure(nfig) 
      plot(t,C(:,1),'b-',t,C(:,2),'r-.',t,C(:,3),'g--','LineWidth',2),grid 
      title('SemiBR:  Component Concentrations (gmoles/liter)')                                           
      xlabel('Time (seconds)'),ylabel('Concentrations (gmoles/liter)') 
      legend('Component A','Component B','Component C')                    
%                                                                               
%   end of simulation 
 
 
 
 
% 
%   SEMIBRA.M   Function for ODE to Evaluate Chemical Reaction Rate Equations 
% 
%   The defining eqns are: 
%      dNA/dt = Qo*CAo - (k1/VR)*NA^2 + k2*NB 
%      dNB/dt = (k1/VR)*NA^2 - k2*NB - (k3/VR)*NB^2 
%      dNC/dt = (k3/VR)*NB^2 
%   with 
%      VR = Vo + Qo*t 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
       function np = odefile(t,n,flag,Qo,Vo,CAo,K1,K2,K3) 
       np = zeros(length(n),1); 
       VR = Vo + Qo*t; 
       np(1) = Qo*CAo - (K1/VR)*n(1)^2 + K2*n(2); 
       np(2) = (K1/VR)*n(1)^2 - K2*n(2) - (K3/VR)*n(2)^2; 
       np(3) = (K3/VR)*n(2)^2; 
% 
%   end of function  
% 
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