
Mathematical Methods (10/24.539) 

X.  Analytical Solution of PDEs 

Introduction 

The topic of PDEs is probably the most important subject in applied engineering math.  This is 
true from the physical viewpoint because PDEs result from the mathematical modeling of real 
engineering/physical systems.  From the pure math perspective, the solution of PDEs brings 
together much of one’s knowledge of advanced mathematics  --  ODEs, eigenvalue problems, 
orthogonality, Laplace and Fourier Transforms, linear algebra, numerical methods, etc..  In 
addition, there is a rich variety of interesting applications from which to select examples to 
illustrate the various methods.  Thus, not only is this subject of fundamental importance, it can 
also be quite rewarding when all your mathematics background comes together to yield 
interesting solutions to challenging real-world problems. 

In our relatively brief overview of PDE solution methods (note that one could easily spend a full 
semester or more on this subject), we will find that certain techniques are appropriate for certain 
classes of problems (this is especially true for the numerical solution techniques discussed in 
Section XI).  Thus, it is often useful to classify various PDEs into one or more categories, and 
then discuss solution methods appropriate for the various classes that have been defined.  The 
most common classification scheme in use deals with 2nd order Quasi-Linear systems that are 
defined by 

2 2 2

2 2A(x, y) u B(x, y) u C(x, y) u u, u, u,x, y
x y x yx y

⎛∂ ∂ ∂ ∂ ∂
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⎞
⎟   (10.1) 

where u(x,y) is the dependent variable, x and y are the two independent variables, the system can 
have variable coefficients, A, B, and C, and the RHS function, φ , can be just about any function 
of interest (linear or nonlinear).  The term quasi-linear is used because the left hand side (LHS) 
of eqn. (10.1) in linear in the dependent variable, but the RHS function may not be. 

Equation (10.1) is often written using a shorthand notation for the partial derivatives, or 

       (10.2) xx xy yy x yAu Bu Cu (u,u ,u ,x, y)+ + = φ

where, in general, the coefficients A, B, and C are functions of x and y, and the uxx, uxy, and uyy 
second-order partial derivatives are defined explicitly by 
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We will use this shorthand notation throughout our treatment of PDE solution methods. 

The most common PDE classification scheme identifies the PDE as either a hyperbolic, 
parabolic, or elliptic equation depending on the sign of the term B2 - 4AC (which can vary with 
x and y).  In particular, we have the following classification scheme: 

2
0 hyperbolic

B 4AC 0 parabolic
0 elliptic

>⎧
⎪− =⎨
⎪<⎩
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These types of systems give rise to significantly different characteristic behavior and, as 
mentioned above, the solution scheme for each method can also differ.  An example of each type 
of PDE is summarized below: 

Application Differential 
Equation Value of Coefficients 

Sign of 
 2B 4AC−

PDE 
Class 

Wave Equation 2
tt xxu u= α  2A 1, B 0, C= = = −α  positive hyperbolic

Diffusion Equation 2
t xu u= α x  2A 0, B 0, C= = = −α  zero parabolic 

Poisson’s Equation xx yyu u f (x, y)+ =  A 1, B 0, C 1= = =  negative elliptic 

 

Methods for solution of PDEs are best demonstrated by examples.  This statement is probably 
applicable for most subjects in science, math, and engineering courses, but it is particularly true 
here.  Thus, our approach, after a very brief overview of the theory, will be to simply do, in 
detail, as many problems as possible. 

With this overall direction in mind, the organization for the remainder of this section of notes is 
given below: 

The Separation of Variables Method

• The Classical Separation of Variables Method 

• Treatment of Inhomogeneous Equations and Boundary Conditions 

• The Eigenfunction Expansion Method 

Analytical Solutions using Separation of Variables 

• Example 10.1  --  Heat Transfer in a Finite Bar with Homogeneous BCs  

• Example 10.2  --  Heat Transfer in a Finite Bar with Fixed End Temperatures 

• Example 10.3  --  Heat Transfer in a Finite Bar with Time Dependent BCs 

• Example 10.4  --  Heat Transfer in a Cylindrical Bar with Homogeneous BCs 

• Example 10.5  --  Heat Transfer in a 2-D Block with One Convective Surface 

Overview of Integral Transform Methods  (not available) 

Analytical Solutions using Integral Transforms  (not available) 
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The Separation of Variables Method 

The Classical Separation of Variables Method 

The Separation of Variables (SOV) method represents one of the most powerful and most used 
analytical techniques for solving a variety of PDEs.  In its traditional form, however, it can only 
be applied directly to linear homogeneous problems with homogeneous boundary conditions.  
The basic idea is to assume that the original function of two variables can be written as a product 
of two functions, each of which is only dependent upon a single independent variable  --  thus 
the name Separation of Variables identifies precisely the technique for initiating the problem 
solution.  The separated form of the solution is inserted into the original linear PDE and, after 
some manipulation, one obtains two homogeneous ODEs that can be solved by traditional 
means.  If the original boundary conditions (BCs) for the problem are homogeneous, one of the 
ODEs will give a Sturm-Liouville type problem, which leads to a set of orthogonal 
eigenfunctions as solutions.  Because the original PDE is linear, its final solution is formed as a 
linear combination of the individual solutions  --  which gives rise to a solution written in the 
form of an infinite series.  A final condition imposed on the problem (either an initial condition 
or a remaining BC that has not yet been used) is used to determine the unknown expansion 
coefficients in the infinite series solution.  Since the basis functions are orthogonal, these 
coefficients are readily determined as illustrated previously (see Section VIII and/or Section IX).  
The analytical solution is complete once the coefficients have been determined.  However, since 
the solution is still written in the form of an infinite series expansion, it is often evaluated and 
plotted using computer techniques  --  thus completing the overall problem. 

This basic procedure for the SOV technique is best illustrated by example.  In particular, 
Example 10.1 solves a 1-D transient heat transfer problem by following the above outline for the 
classical Separation of Variables method, and the final infinite series solution is evaluated and 
plotted within Matlab.  It represents a fundamental, straightforward demonstration of the basic 
technique. 

A similar problem is given in Example 10.4.  This situation also models transient heat transfer in 
a 1-D configuration but, this time, the geometry involves cylindrical coordinates.  As seen 
before, cylindrical geometry problems often lead to Bessel function solutions, and this is indeed 
the situation here.  Thus, Example 10.4, in addition to illustrating the classical SOV scheme, also 
gives another example of the importance of Bessel functions in typical engineering applications. 

Examples 10.1 and 10.4 both involve transient heat transfer in a 1-D geometry, and this situation 
is described by a diffusion-type equation, which falls into the parabolic PDE classification.  As 
an example of the solution to an elliptic PDE, Example 10.5 addresses the steady state heat 
transfer process in a 2-D rectangular block.  An energy balance for this situation gives Laplace’s 
equation since there is no internal heat source in the problem (Laplace’s equation is the same as 
Poisson’s equation with f(x,y) = 0).  The common thread here is that this problem is linear, 
homogeneous, and one of the dimensions has homogeneous BCs  --  thus, the classical SOV 
method is applicable.  These three problems, Examples 10.1, 10.4, and 10.5, should give the 
reader a good overview of how to apply the classical SOV method to a variety of problems. 
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Treatment of Inhomogeneous Equations and Boundary Conditions 

If the either the original linear PDE or the BCs have inhomogeneous terms, the classical 
Separation of Variables (SOV) method will not work.  However, one technique that is often 
successful is to break the desired solution into two components  --  one that is a function of both 
independent variables and one that is only a function of one of the variables.  More specifically, 
one can often convert the original PDE into two problems; a homogeneous PDE with 
homogeneous boundary conditions (BCs) that can be solved by the SOV method, and an ODE 
that can be solved by traditional methods. 

As a particular example, consider the mathematical description of transient heat conduction in a 
1-D laterally insulated bar.  This situation is governed by 

          (10.3) t xxu u Q(x= α + )

R=

'+

Q

where Q(x) could account for an internal heat generation term in the energy balance (this term 
makes the parabolic PDE inhomogeneous).  If, in addition, fixed endpoint temperatures are 
imposed (i.e. inhomogeneous BCs), we have BCs of the form 

       (10.4) Lu(0, t) u and u(L, t) u=

where L represents the length of the bar and uL and uR are the left and right endpoint 
temperatures, respectively.  Finally, specifying some initial temperature distribution, 

u(x,0) f (x)=           (10.5) 

completes the mathematical description of a particular heat transfer problem. 

Now, following the above guidelines, we can try to solve this problem by separating the desired 
solution, u(x,t), into two components  --  the transient solution, v(x,t), and the steady state 
solution, w(x), or 

u(x, t) v(x, t) w(x)= +         (10.6) 

With this assumed solution, we have 

t t xx xxu v and u v w '= =  

and substitution into eqn. (10.3) gives 

t xxv v w ''= α + α +  

However, since we desire a homogeneous PDE, we let  

1w '' Q 0 or w '' Qα + = = −
α

 

and, with this condition, the remaining PDE for v(x,t) is homogeneous, or 

t xv v= α x  

We also desire homogeneous boundary conditions for the PDE.  Performing similar operations 
as above, we substitute eqn. (10.6) into the original statement for the BCs [eqn. (10.4)] giving 

L Lu(0, t) v(0, t) w(0) u and with w(0) u , we have v(0, t) 0= + = = =  

Lecture Notes for Math Methods by Dr. John R. White, UMass-Lowell (updated Sept. 2004) 



Math Methods  --  Section X:  Analytical Solution of PDEs 5

and 

R Ru(L, t) v(L, t) w(L) u and with w(L) u , we have v(L, t) 0= + = = =  

as desired. 

As a last step, eqn. (10.6) is also inserted into eqn. (10.5) which describes the initial temperature 
distribution, or 

u(x,0) v(x,0) w(x) f (x)= + =  

which gives the initial condition for the v(x,t) problem as 

v(x,0) f (x) w(x)= −  

Thus, the conversion process is now complete  --  the original problem which included an 
inhomogeneous PDE with inhomogeneous BCs has been converted into two problems, and each 
of these is straightforward to solve. 

The transient solution, v(x,t), is completely defined by 

t xxv v with v(0, t) 0, v(L, t) 0, and v(x,0) f (x) w(x)= α = = = −   (10.7) 

This problem includes a homogeneous PDE with homogeneous boundary conditions.  Therefore, 
we can use the classical Separation of Variables method to determine v(x,t).   

The steady state problem is completely defined by 

 L
1w '' Q with w(0) u and w(L) u= − = =
α R     (10.8) 

which is a relatively simple ODE that can be solved by standard methods. 

Finally, the solutions to the two separate problems given by eqns. (10.7) and (10.8) are 
substituted into eqn. (10.6) to give the desired space-time temperature distribution, u(x,t); thus 
completing the original problem of interest. 

The basic technique outlined here is often quite useful.  Example 10.2 illustrates this method for 
a particular 1-D transient heat transfer problem (a laterally insulated bar with fixed endpoint 
temperatures), including solution of the two sub-problems with implementation and plotting of 
the solutions within Matlab.  It serves as a good illustration of the basic approach to solving 
problems of this type.  Note that, since a preconditioning step to account for the inhomogeneous 
source term and/or the inhomogeneous BCs is often required for most realistic problems, this 
example includes all the steps needed in most situations where the SOV method can be used. 

The Eigenfunction Expansion Method 

Unfortunately, one cannot always remove the inhomogeneous terms from the PDE or BCs as 
illustrated in the above discussion.  When this occurs, we often have difficulty finding an exact 
analytical solution to the given problem.  However, if we combine the basic ideas of the SOV 
method and our knowledge and understanding of Generalized Fourier Series, we can always 
generate approximate solutions  --  which are sometimes quite good depending on our ability to 
find a set of suitable expansion functions.  The dilemma, of course, is that, without a Sturm-
Liouville type sub-problem (which requires a homogeneous ODE and homogeneous BCs), we 
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can not generate an orthogonal set of eigenfunctions that are fully consistent with the desired 
problem specifications.  One approach to this problem is to select a reasonable set of functions 
for the infinite series expansion and then proceed systematically to determine the unknown 
coefficients within the series, hoping to get a reasonable approximation to the real solution.  
This general technique is often referred to as the Eigenfunction Expansion Method. 

As before, the best way to explain the method is via example.  Let’s again choose a parabolic 
PDE, the Diffusion Equation, for our example, but this time the BCs will be time dependent.  
This problem can be described mathematically as follows: 

t xx 1 2u u with u(0, t) g (t) u(L, t) g (t) and u(x,0) f (x)= α = = =   (10.9) 

where g1(t) and g2(t) are known time-dependent boundary values that are imposed on the left 
side and right side of the interval of interest. 

Note that the technique used in the previous subsection will not work for this problem.  
However, based on experience with the Separation of Variables (SOV) method, let’s assume that 
the solution to eqn. (10.9) can be written as 

n n
n

u(x, t) a (t) (x)= φ∑         (10.10) 

where the  functions are a set of known functions defined over the domain of interest and 
the a

n (x)φ

n(t) functions are unknown coefficients to be determined as part of the solution process.  
Equation (10.10) is an assumed solution, which may or may not lead to an exact result for a 
given problem.  In general, if the expansion functions do not exactly satisfy the BCs for the 
problem, no analytical solution is possible  --  this is the situation in this problem, since the 
imposed BCs are time dependent.  However, as we have seen in Sections VIII and IX, we can 
still use a Generalized Fourier Series to approximate the given function and, away from the 
boundaries, the series approximation usually gives a very good result. 

Now, proceeding systematically from the assumed solution given in eqn. (10.10), we shall 
attempt to develop an expression for the unknown coefficients, an(t).  To do this, multiply eqn. 
(10.10) by  and integrate over the spatial domain to give m(x)φ

      (10.11) 
L L

m n m n0 0
n

u(x, t) (x)dx a (t) (x) (x)dxφ = φ φ∑∫ ∫

This equation is rather complex for the general case for arbitrary n (x)φ .  However, if the spatial 
expansion functions, , are solutions to an “associated” homogeneous ODE with 
homogeneous boundary conditions, then an explicit equation for a

n (x)φ

n(t) results.  The term 
associated implies that the best choice for the basis functions should be the solution set from a 
Sturm-Liouville problem that closely resembles the problem being addressed.  This will give a 
set of functions that are orthogonal over the domain defined by the original problem, and 
significantly reduce the complexity associated with eqn. (10.11). 

To see this, let’s choose  be a solution to n (x)φ

2''(x) (x) 0 with (0) 0 and (L) 0φ + λ φ = φ = φ =  
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The general solution to this ODE is 

1 2(x) A sin x A cos xφ = λ + λ  

Applying the BC at x = 0 gives 

1 2 2(0) 0 A (0) A or A 0φ = = + =  

Similarly at x = L, we have 

1(L) 0 A sin Lφ = = λ  

which leads to the eigencondition 

sin L sin n for n 1, 2,λ = π =  

Thus, the eigenvalues and eigenfunctions for this “associated” problem are 

n n n
n and (x) sin x for n 1, 2,
L
π

λ = φ = λ =     (10.12) 

Since these functions are solutions to a Sturm-Liouville problem, we have 
L

m n m0

L(x) (x)dx
2

φ φ = δ∫ n  

as the formal statement of orthogonality for these functions. 

Substituting this orthogonality relation into eqn. (10.11) gives 
L

n 0

2a (t) u(x, t)sin xdx
L

= ∫ nλ         (10.13) 

which is a considerable simplification of the original expression  --  this is a direct result of the 
use of orthogonal functions.  However, we still have some work to do, since eqn. (10.13) has 
an(t) written in terms of the solution u(x,t).  We can resolve this situation, by differentiating eqn. 
(10.13) with respect to time to give 

L
n t0

d 2a (t) u (x, t)sin xdx
dt L

= λ∫ n  

But the original PDE allows us to replace  with tu (x, t) xxu (x, t)α , or 

L
n xx0

d 2a (t) u (x, t)sin xdx
dt L

α
= λ∫ n  

Now integrating the RHS of this expression by parts, using the expressions 

{ }n x

n n x

wdz wz zdw with w sin x dz u (x, t) dx
x

dw cos x dx z u (x, t)

∂
= − = λ =

∂
= λ λ =

∫ ∫  

gives 
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{ }LL
n x n n x n0 0

d 2a (t) u (x, t)sin x u (x, t)cos x dx
dt L

α
= λ − λ ∫ λ  

or 
Ln

n x0

d 2a (t) u (x, t)cos xdx
dt L

αλ
= − λ∫ n  

Integrating by parts one more time with 

{ }n

n n

wdz wz zdw and w cos x dz u(x, t) dx
x

dw sin x dx z u(x, t)

∂
= − = λ =

∂
= −λ λ =

∫ ∫  

gives 

{ }LLn
n n n0 0

n
n n

n
2 1 n n

d 2a (t) u(x, t)cos x u(x, t)sin xdx
dt L

2 Lu(L, t)cos n u(0, t) a (t)
L 2

2 Lg (t)cos n g (t) a (t)
L 2

αλ
= − λ + λ λ

αλ ⎧ ⎫= − π − + λ⎨ ⎬
⎩ ⎭

αλ ⎧ ⎫= − π − + λ⎨ ⎬
⎩ ⎭

∫ n

 

where, in the last equality, we have used the imposed boundary conditions to replace u(0,t) and 
u(L,t).  With one final algebraic simplification, one has 

n 2n
n 2 1

d 2a (t) ( 1) g (t) g (t) a (t)
dt L

αλ ⎡ ⎤= − − − − αλ⎣ ⎦ n n  

or  

2
n n n n n

d a (t) a (t) g (t)
dt

+ αλ = β         (10.14) 

with  defined by n nand g (t)β

nn
n n

2 and g (t) ( 1) g (t) g (t)
L

αλ
β = − = − −2 1     (10.15) 

Finally, note that the initial condition, u(x,0), is needed to specify the initial condition for .  
Inserting t = 0 into eqn. (10.13) gives the desired relationship, 

na (0)

L L
n n0 0

2 2a (0) u(x,0)sin xdx f (x)sin xdx
L L

= λ =∫ ∫ nλ     (10.16) 

Equations (10.14)-(10.16) completely define a set of first order linear ODEs for the  
coefficients.  Given g

na (t)
1(t) and g2(t) for a particular problem, this system can be solved for the 

specific time-dependent coefficients of interest.  These coefficients, coupled with the spatial 
functions defined in eqn. (10.12), give the final solution to this problem via eqn. (10.10). 
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This solution scheme is certainly more complicated than the classical Separation of Variables 
method, and it usually only gives approximate solutions, depending upon how well the BCs are 
satisfied.  However, if the original problem cannot be treated with the classical method, then one 
can at least get a reasonable idea of the general result for the problem. 

Example 10.3 illustrates this method.  It treats a 1-D transient heat conduction problem with a 
time-dependent right boundary condition.  The solution is evaluated in Matlab and the results are 
plotted and discussed.  It is clear from the plotted solutions that the right boundary condition is 
not satisfied during the early transient; thus, the space-time temperature distribution throughout 
the whole domain can only be treated as an approximation to reality. 

Note:  This same problem is also solved again in Example 11.4 in the next section using a 
numerical technique.  Comparison of the two solutions shows that the analytical method is 
indeed approximate, but overall it does quite well in establishing the general space-time 
temperature profile for this system (near the left end of the bar the predictions are very good). 

Although the Eigenfunction Expansion Method is useful in a variety of situations, it is quite 
tedious and it only gives approximate solutions to the problem of interest.  In practical 
engineering analysis applications, when a problem can not be solved using exact analytical 
means, a numerical solution scheme is used.  Thus, the current method often serves as a bridge 
between a pure analytical technique and a numerical approach to a particular problem.  When the 
analytical methods become this tedious and/or only give approximate solutions, then it is clearly 
time to look to the computer for assistance  --  and this is exactly the approach taken in Section 
XI on the Numerical Solution of PDEs. 

The SOV and general Eigenfunction Expansion methods are quite powerful for the analytical 
solution of many classical PDE problems, and a series of detailed examples are available in the 
next subsection to give the reader some experience with the details of the methods outlined here.  
The first three problems illustrate, respectively, the three subjects discussed here  --  the classical 
SOV method, the treatment of inhomogeneous source terms and inhomogeneous BCs, and the 
general Eigenfunction Expansion method.  These three problems should be studied in detail to 
get a good overview of the basic solution techniques.  Beyond the basics, however, one is often 
faced with a number of subtle differences from the classical examples presented here and the 
problems you are asked to solve in practical applications.  Thus, a set of additional worked-out 
examples are also provided to give the reader further experience beyond the basics  --  such as 
working with cylindrical coordinates which often lead to solutions in the form of a generalized 
Fourier-Bessel series, the treatment of elliptic PDEs (relative to the parabolic PDEs addressed in 
the first three examples), etc. etc..  Each example has something new to offer, and you are 
encouraged to study each of these in some detail  --  since, as stated before, the best way to 
understand various PDE solution methods is via example!!!   
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Example 10.1  --  Heat Transfer in a Finite Bar with Homogeneous BCs 

Problem Description: 

A laterally insulated bar of length L initially has some temperature distribution given by f(x).  
The ends at x = 0 and x = L are held fixed at 0 0C for all time.  Determine the temperature profile 
versus time, u(x,t), given that 

  
x if 0 x L /

f (x)
L x if L / 2 x L

          
          

< <⎧
= ⎨ − <⎩

2
<

Use  cm1α = 2/s and L = 50 cm for numerical evaluation and plotting of the solution within 
Matlab. 

Problem Solution: 

Theoretical Development 

This problem calls for a classic Separation of Variables solution scheme since the defining heat 
conduction equation (i.e. the Diffusion Equation) and the boundary conditions are both 
homogeneous.  Formally, this problem can be stated mathematically as 

  t xxu (x, t) u (x, t) with u(0, t) 0, u(L, t) 0, and u(x,0) f (x)= α = = =

Following the outline discussed previously, let’s first assume a solution of the form 

u(x, t) F(x)G(t)=  

Substitution of this expression into the PDE gives 

  FG F''G
•

= α

where the “dot” notation implies a time derivative and the “primes” indicate spatial derivatives. 

This equation is separable, or 

 F '' G k
F G

•

= =
α

 

where k is referred to as a separation constant.  The implication here is that, since the LHS is 
only a function of x and the RHS is only a function of t, for these terms to be equal to each other 
for all x and t, they must both be constants  --  which is indicated by the separation constant, k.  
This observation is very important because it effectively breaks the original PDE into two 
separate ODEs; one for the G(t) function and another for F(x).  The two equations are 

  G kG 0 and F'' kF
•

− α = − = 0

where the specification of the F-problem becomes complete with the conversion of the original 
BCs to the new notation.  Formally, we have 

u(0, t) 0 G(t)F(0) 0 or F(0) 0

u(L, t) 0 G(t)F(L) 0 or F(L) 0

= ⇒ = =

= ⇒ = =
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Thus, the G-problem is a simple first order ODE with solution 
ktG(t) Ceα=  

and the F-problem is a Sturm-Liouville problem (homogeneous ODE with homogeneous BCs).  
From our experience with eigenvalue problems of this type, we recognize that  leads to 
trivial solutions.  Thus, we choose k to be negative, or 

k 0≥
2k = −λ , which gives 

  2
1 2F '' F 0 with solution F(x) C sin x C cos x+ λ = = λ + λ

Now let’s apply the BCs to the general solution for the F-problem, or 

1 2 2at x 0, F(0) 0 C (0) C (1) or C 0= = = + =  

1at x L, F(L) 0 C sin L or sin L sin n 0 for n 1, 2,= = = λ λ = π = =  

where this last condition is the eigencondition for this problem.  Thus, the eigenvalues and 
eigenfunction solutions are given by 

n n
n n xand F (x) sin for n 1, 2,
L L
π π

λ = = =  

(note that this solution was already obtained as part of Example 9.1) 

Now, since we have multiple values of nλ  that satisfy the spatial problem, we also have multiple 

solutions for the G-problem.  Rewriting the above G(t) solution with 2
nk n= −λ  gives 

  
2
nt

n nG (t) C e−αλ=

With known distribution functions for the spatial and temporal profiles, the desired temperature 
distribution can be written as  

2
nt

n n n n n
n n n

u(x, t) u (x, t) F (x)G (t) C sin x e−αλ= = = λ∑ ∑ ∑  

where we have used the fact that linear equations have general solutions that are formed from a 
linear combination of the individual solutions. 

The only remaining unknown left to be determined is the coefficient, Cn.  However, we still have 
an initial condition for this problem that has not yet been used.  In particular, letting t = 0 in the 
final expression for u(x,t) gives 

 n
n

n xu(x,0) f (x) C sin
L
π

= = ∑  

However, this is just a Fourier series expansion for f(x) in terms of a set of orthogonal basis 
functions.  The unknown expansion coefficients, Cn, can be determined, as usual, by using the 
orthogonality property of the expansion functions.  In particular, if we multiply both sides of the 
last expression by  and integrate over 0 < x < L, we have msin xλ

 
L L

n0 0
n

m x n x m xf (x)sin dx C sin sin dx
L L
π π

= ∑∫ ∫ L
π  
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and since the norm for these functions is L/2, we get 
L

m 0

2 mC f (x)sin
L L

π
= ∫

x dx  

Now we can evaluate the desired Cn’s for the specific f(x) given in the problem specification, or 
L L
2 Ln 0

2

L
2 2

0
L2

L
2

2 n x n xC x sin dx (L x)sin dx
L L L

2 L n x L n xsin x cos
L n L n L

2 L n x L n x L n xL cos sin x cos
L n L n L n L

⎡ ⎤π π
= + −⎢ ⎥

⎣ ⎦

⎡ ⎤π π⎛ ⎞= −⎢ ⎥⎜ ⎟π π⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤π π⎛ ⎞⎛ ⎞ ⎛ ⎞+ − − +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟π π π⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫

π

 

or 
2

n

22 2

2 L nC sin 0 0 0
L n 2

2 L L L ncos n 0 cos n 0 sin 0
L n n n 2

⎡ ⎤π⎛ ⎞= + − +⎢ ⎥⎜ ⎟π⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤π⎛ ⎞+ − π − + π + + −⎢ ⎥⎜ ⎟π π π⎝ ⎠⎢ ⎥⎣ ⎦

 

Thus, the coefficients simplify to 

n 2
4L nC sin

2(n )
π

=
π

 

Finally we note that sin n 2π  is zero for even n.  Thus, we can consider only the nonzero 
coefficients by letting . n 2m 1 for m 1, 2,= − =

We have finally completed this development using the classical Separation of Variables method.  
In summary, the pertinent equations for the space-time temperature profiles for this example are 

2
mt

m m
m

u(x, t) C sin xe−αλ= λ∑  

where 

m m2 2
4L (2m 1) (2m 1)C sin and for m

2 L(2m 1)
− π − π

= λ =
− π

1, 2,=  
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Matlab Implementation 

These final expressions have been implemented and evaluated in Matlab file ht1d_sov1.m, and 
the resultant temperature profiles for various times have been plotted.  The Matlab file is listed in 
Table 10.1.  The expansion coefficients and eigenvalues are first evaluated for some maximum 
number of nonzero terms and stored for later use.  Then, an outer loop over Nt discrete time 
points is initiated and, within this loop, a while loop over the nonzero components of the series 
expansion is made as long as the next term continues to contribute to the partial sum.  The spatial 
variable is simply treated using the vector arithmetic capability built into the Matlab syntax.  
Finally, the discrete time profiles are plotted as separate curves in a single Matlab figure. 

The final solution profiles for this problem are given in Fig. 10.1.  At t = 0, the temperature 
profile has a triangular shape as specified in the problem description.  Since there is no energy 
generation within the bar and the endpoint temperatures are fixed at zero, we expect that, over 
time, the energy within the bar will move along the bar toward the ends.  Eventually, all the 
energy initially stored in the bar will dissipate, leaving the bar at a constant temperature of zero 
degrees.  As seen in Fig. 10.1, this is exactly what is observed from the simulations.  The profiles 
are always symmetric, as expected, and the temperatures gradually do approach the endpoint 
temperatures. 

This example represents a good illustration of the Separation of Variables method and the 
Matlab file ht1d_sov1.m shows, in general, how to numerically evaluate infinite series 
expansions for visualization and analysis of the analytical solutions.  This same scheme can also 
be applied to other problems of this type. 

Finally, we note that the reader should also see Examples 10.4 and 10.5 for additional 
demonstrations of the classical SOV method.  Example 10.4, in particular, is very similar to the 
problem solved here, except that the heat transfer flows radially outward from the center of a 
cylindrical bar.  Because of the cylindrical geometry, the expansion functions for Example 10.4 
turn out to be Bessel functions.  Thus, in addition to providing further insight into the SOV 
method, Example 10.4 also gives some additional experience with the use of Bessel functions for 
solving some real problems of interest.   

Example 10.5, in contrast, solves a steady state heat transfer problem in 2-D geometry.  
Although this problem also uses the classical SOV method, the base mathematical problem is an 
elliptic PDE (rather than a parabolic PDE as for the current example), and the solution scheme is 
somewhat different.  Thus, Example 10.5 is a good companion problem to the current example. 

 

Table 10.1  Listing of Matlab file ht1d_sov1.m. 

% 
%   HT1D_SOV1.M   Heat Transfer in a 1-D Finite Bar (Example 10.1 in Class Notes) 
% 
%   Analytical Solutionn using Separation of Variables (SOV) method for the  
%   following problem: 
%     ut(x,t) = alf*uxx(x,t)   with u(0,t) = 0   u(L,t) = 0   u(x,0) = f(x) 
%     where    u(x,0) = f(x) = x    if 0 < x <L/2        
%                             L-x  if L/2 < x < L  
% 
%   The goal here is to evaluate and plot the temperature profile in the  
%   1-D finite bar of length L at various time points.  This is an easy 
%   way to visualize the full space-time solution, u(x,t). 
% 
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%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all,   close all,   nfig = 0; 
% 
%   problem data 
      alf = 1.0;              % cm^2/s thermal diffusivity 
      L = 50;                 % cm     length of bar 
      Nx = 101;               % number of x values 
      x = linspace(0,L,Nx)';  % vector of points to evaluate function 
      nmax = 50;              % max number of nonzero terms 
      tol = 0.001;            % tolerance to stop series evaluation 
%    
%   calc ln = n*pi/L  and   bn = (4*L/n*pi)*sin(n*pi/2)  for n = 1,3,5,... 
      ln = zeros(1,nmax);   bn =  zeros(1,nmax); 
      dd = pi/L;    cc = 4*L/(pi^2);     
      for m = 1:nmax 
        n = 2*m-1;     ln(m) = n*dd;    cn(m) = cc*sin(n*pi/2)/(n^2); 
      end 
% 
%   now evaluate series expansion for several different times 
      tt = [0 25 100 250 500];   Nt = length(tt);   ut = zeros(Nx,Nt);    
% 
      for i = 1:Nt 
        t = tt(i);   cc = -alf*t;   mrerr = 1.0;   n = 0;   u = zeros(size(x)); 
        while mrerr > tol   &   n < nmax 
          n = n+1;   un = cn(n)*exp(cc*ln(n)*ln(n))*sin(ln(n)*x);   u = u + un;    
          j = find(u);                    % finds indices of nonzero values of u(x) 
          mrerr = max(abs(un(j)./u(j)));  % compute max relative error 
        end 
        ut(:,i) = u; 
        disp([' Needed ',num2str(n),' terms for convergence at t = ',num2str(t),' s']) 
      end 
% 
%   plot curves of u(x,t) for various times 
       nfig = nfig+1;  figure(nfig) 
       v = [0 L 0 25]; 
       plot(x,ut,'LineWidth',2),axis(v) 
       title('HT1D\_SOV1:  Bar Temperature Profile at Various Times (Example 10.1)') 
       grid,xlabel('Distance (cm)'),ylabel('Temperature (C)') 
       for i = 1:Nt,  gtext(['t = ',num2str(tt(i)),' s']),   end 
% 
%   end of example% 

 

 
Fig. 10.1  Temperature profiles from Example 10.1. 
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Example 10.2 – Heat Transfer in a Finite Bar with Fixed End Temperatures 

Problem Description: 

A laterally insulated bar of length L initially has some temperature distribution given by f(x).  At 
time zero, the left and right sides are subjected to fixed temperatures, uL and uR, respectively, 
and these are held constant for all time.  Determine the temperature profile versus time, u(x,t), 
given the following specific conditions: 

o o o
L Ru 100 C u 400 C f (x) 70 C (i.e. initial profile is cons tan t) = = =  

Also use 2
pk c 0.0001 m sα = ρ =  and L = 1 m for numerical evaluation and plotting of the 

solution within Matlab. 

Problem Solution: 

Theoretical Development 

Formally, this problem can be stated mathematically as 

  t xx L Ru (x, t) u (x, t) with u(0, t) u , u(L, t) u , and u(x,0) f (x) u= α = = = = 0

=

L=

Since the BCs are not homogeneous, the standard Separation of Variables solution scheme will 
not work.  However, as discussed previously, let’s first assume a solution of the form 

  u(x, t) v(x, t) w(x)= +

Upon substitution, the original PDE is converted into two problems: a homogeneous PDE with 
homogeneous BCs that describes the transient solution, and an ODE that represents the final 
steady state solution for this situation.  The transient problem is described by  

t xxv v with v(0, t) 0, v(L, t) 0, and v(x,0) f (x) w(x)= α = = = −  

and the steady state problem is completely defined by 

   L Rw '' 0 with w(0) u and w(L) u= =

Both these problems are straightforward to solve.  Working first on the steady state solution, we 
have after two integrations 

1 2w(x) C x C= +  

and applying the boundary conditions gives 

L 1 2 2at x 0, w(0) u C (0) C or C u= = = +  

R L
R 1 L 1

u uat x L, w(L) u C L u or C
L
−

= = = + =  

Thus, the steady state solution is simply a linear profile given by 

R L
L

u uw(x) x u
L
−⎛ ⎞= +⎜ ⎟

⎝ ⎠
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Now turning to the transient part, we can use a classical Separation of Variables approach for 
this homogeneous PDE with homogeneous BCs.  Following the same procedure as used in 
Example 10.1, let’s first assume a solution of the form 

v(x, t) F(x)G(t)=  

Substitution of this expression into the PDE gives 

  FG F''G
•

= α

and since this is separable, we have 

 F '' G k
F G

•

= =
α

 

where k is the separation constant.  The form of this expression implies that each term must be a 
constant for this equality to be true for all x and t.  This observation is essential because it 
effectively breaks the original PDE into two separate ODEs; one for the G(t) function and 
another for F(x).  The two equations are 

  G kG 0 and F'' kF 0 with F(0) 0 F(L) 0
•

− α = − = = =

Thus, the G-problem is a simple first order ODE with solution ktG(t) Ceα= , and the F-problem 
is a Sturm-Liouville problem (homogeneous ODE with homogeneous BCs).  Based on prior 
experience with eigenvalue problems of this type, we recognize that k  leads to trivial 
solutions.  Thus, we choose k to be negative, or 

0≥
2k = −λ , which gives 

  2
1 2F '' F 0 with solution F(x) C sin x C cos x+ λ = = λ + λ

Now applying the BCs to the general solution for the F-problem gives 

1 2 2at x 0, F(0) 0 C (0) C (1) or C 0= = = + =  

1at x L, F(L) 0 C sin L or sin L sin n 0 for n 1, 2,= = = λ λ = π = =  

where the last condition is the eigencondition for this problem.  Thus, the eigenvalues and 
eigenfunction solutions are given by 

n n
n n xand F (x) sin for n 1, 2,
L L
π π

λ = = =  

The multiple values of  that satisfy the spatial problem lead to multiple solutions for the G-

problem.  Rewriting the above G(t) solution with 
nλ

2
nk n= −λ  gives 

  
2
nt

n nG (t) C e−αλ=

Now, we write the desired solution to the transient problem in terms of a linear combination of 
the individual solutions, or 

2
nt

n n n n n
n n n

v(x, t) v (x, t) F (x)G (t) C sin x e−αλ= = = λ∑ ∑ ∑  
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As before, the initial condition for this problem can be used to determine the remaining unknown 
coefficients, Cn.  In particular, letting t = 0 in the expression for v(x,t) gives 

 n
n

n xv(x,0) f (x) w(x) g(x) C sin
L
π

= − = = ∑  

The unknown expansion coefficients, Cn, in this Fourier series expansion for g(x) can be 
determined by using the orthogonality property of the expansion functions.  In particular, if we 
multiply both sides of the last expression by msin xλ  and integrate over 0 < x < L, we have 

 
L L

n0 0
n

m x n x m xg(x)sin dx C sin sin dx
L L
π π

= ∑∫ ∫ L
π  

and since the norm for these functions is L/2, we get 
L

m 0

2 mC g(x)sin
L L

π
= ∫

x dx

o

 

Now all we are left with is the application of specific values for this problem.  With L = 1 m and 
fixed endpoint temperatures, , the steady state solution becomes o

L Ru 100 C and u 400 C= =

 R L
L

u uw(x) x u 300x 100
L
−⎛ ⎞= + =⎜ ⎟

⎝ ⎠
+  

Also, with an initially constant profile, , the initial condition for v(x,t) 
becomes , or 

0
0f (x) u 70 C= =

v(x,0) g(x) f (x) w(x)= = −

 r L
0 L

u ug(x) u x u 70 300x 100 30(10x 1)
L
−⎛ ⎞= − − = − − = − +⎜ ⎟

⎝ ⎠
 

With this result, we can calculate the expansion coefficients as 

 

L 1
n 0 0

1 1

2 2
0 0

2 n xC g(x)sin dx 60 (10x 1)sin n xdx
L L

1 1 160 10 sin n x x cos n x cos n x
n nn

600 60cos n (cos n 1)
n n

π
= = − + π

⎧ ⎫−⎪ ⎪⎡ ⎤ ⎡= − π − π + π⎨ ⎬⎢ ⎥ ⎢π ππ⎣ ⎦ ⎣⎪ ⎪⎩ ⎭

= π + π −
π π

∫ ∫
⎤
⎥⎦

 

or 

 n n
n

600 60C ( 1) ( 1)
n n

⎡ ⎤= − + − −⎣ ⎦π π
1  

Finally, with the Cn’s known, we can form the complete solutions as , or u(x, t) v(x, t) w(x)= +

 
2
nt R L

n n
n

u uu(x, t) C sin( x)e x u
L

−αλ −⎛ ⎞= λ + ⎜ ⎟
⎝ ⎠

∑ L+  

with all the constants completely specified. 
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Matlab Implementation 

The solution for this problem has been implemented and evaluated in Matlab file ht1d_sov2.m, 
and the resultant temperature profiles for various times have been plotted in Fig. 10.2.  The 
Matlab file is listed in Table 10.2.  The coding algorithm used here is similar to that discussed 
for Example 10.1 (see listing of ht1d_sov1.m in Table 10.1) except, for the current problem, the 
steady state solution has been added to the solution of the transient problem. 

As shown in Fig. 10.2, at t = 0 the constant temperature distribution is represented only roughly 
by the Fourier series expansion.  This was expected, since the endpoints associated with the 
expansion functions do not match the function being represented.  Thus, there is no way this 
function can be reproduced exactly with the basis functions for this problem  --  even with an 
infinite number of terms (recall that this situation was observed previously in Example 9.1).  
Normally, since the initial temperature profile is known, the exact f(x) distribution is plotted.  
Here we chose to evaluate and plot the series representation of u(x,t) at t = 0 just to re-emphasize 
that the series expansion does not always converge to the exact profile.  The time evolution of 
the temperature profiles, however, follows expected behavior, eventually approaching the steady 
state linear temperature distribution at long times (t = 5000 s in Fig. 10.2).  The series 
representation is exact for t > 0, since the eigenfunctions match the actual BCs for all t > 0. 

Note that an option was also implemented within in the Matlab file to allow the user to create a 
movie that represents the time evolution of the temperature profiles via animation.  The student 
is invited to actually run ht1d_sov2.m to observe this animation.  It simply represents another 
way to help visualize the physical behavior of this system. 

The primary purpose of this example was to illustrate how to treat problems with 
inhomogeneous components.  This was achieved by breaking the problem into two parts, and by 
solving each of these using standard methods.  The Matlab file for this problem, ht1d_sov2.m, 
simply represents another example of the evaluation and plotting of Fourier series solutions for a 
particular PDE.  It also introduces the use of animation as a tool that might aid in the 
visualization and understanding of the physical processes occurring in the system of interest. 

 
Fig. 10.2  Temperature profiles from Example 10.2. 
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Table 10.2  Listing of Matlab file ht1d_sov2.m. 

%   
%   HT1D_SOV2.M   Heat Transfer in a 1-D Finite Bar  (Example 10.2 in Class Notes) 
%   
%   Analytical Solution using Separation of Variables (SOV) to the following problem:  
%      ut(x,t) = alf*uxx(x,t)   with  u(0,t) = ul   u(L,t) = ur   u(x,0) = u0  
%   has solution given by 
%      u(x,t) = v(x,t) + w(x)      
%   where v(x,t) is the transient solution and w(x) is the steady state solution   
% 
%   The goal here is to evaluate and visualize the temperature profile in the  
%   1-D finite bar of length L.  Two options are provided: 
%     1. Create snapshots of u(x) for several times.  This is an easy 
%        way to visualize the full space-time solution, u(x,t). 
%     2. Use Matlab's animation capability to create a movie that 
%        shows the spatial temperature profile changing in time. 
% 
%   File prepared by J. R. White, UMass-Lowell  (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all,   close all,   nfig = 0; 
%   
%   problem data                                                          
      alf = 0.0001;    % m^2/s  thermal diffusivity                             
      ul = 100;        % C      fixed temp at left end                          
      ur = 400;        % C      fixed temp at right end                         
      u0 = 70;         % C      initial uniform temp of bar                     
      L = 1;           % m      length of bar                                  
      maxt = 50;       % max number of terms in expansion 
      tol = 0.001;     % tolerance used to stop series expansion 
% 
%   the steady state solution w(x) 
      Nx = 101;   x = linspace(0,L,Nx)';   w = (ur-ul)*x/L + ul;         
% 
%   now v(x,t) is given as an infinite series                                  
%   calc terms for n = 1,2,3,4,5,...,max                                    
      cc1 = 600*L/pi;   cc2 = 60/pi;   
      for n = 1:maxt 
        lam(n) = n*pi/L;   c(n) = (1/n)*(cc1*(-1)^n + cc2*((-1)^n-1)); 
      end       
% 
%   define time points and initialize space-time distribution 
      opt = menu('Output plot option?','Create profiles at 5 time points', ... 
                 'Make a movie with Nt frames'); 
      switch opt 
        case 1     % use for plotting snapshots 
          Nt = 5;   tt = [0 50 250 1000 5000]; 
        case 2     % use for making smooth movie 
          Nt = input(' Input number of frames for movie (5-100): '); 
          if Nt < 5,    Nt = 5;    end 
          if Nt > 100,  Nt = 100;  end 
          tt = linspace(0,5000,Nt);  
      end 
% 
%   start loop over time points 
      u = zeros(Nx,Nt); 
      for i = 1:Nt                                                      
        t = tt(i);   cc = -alf*t;   mrerr = 1.0;   n = 0;   v = zeros(size(x)); 
          while mrerr > tol   &   n < maxt 
            n = n+1;  vn = c(n)*sin(lam(n)*x).*exp(cc*lam(n)*lam(n));  v = v + vn;  
            j = find(v);                    % finds indices of nonzero values of v(x) 
            mrerr = max(abs(vn(j)./v(j)));  % compute max relative error 
          end 
        u(:,i) = v + w; 
        disp([' Needed ',num2str(n),' terms for convergence at t = ',num2str(t),' s']) 
      end 
% 
%   plot curves of u for various times (if opt = 1) 
      switch opt 
        case 1 
          nfig = nfig+1;   figure(nfig)                         
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          plot(x,u,'LineWidth',2) 
          axis([0 1 0 400]);                         
          title('HT1D\_SOV2:  Bar Temperature for Several Times (Example 10.2)')   
          grid,xlabel('Distance (m)'),ylabel('Temperature (C)')        
          for i = 1:Nt,   gtext(['t = ',num2str(tt(i)),' s']),   end 
% 
%   let's make a movie of the time-dependent profile (if opt = 2) 
        case 2 
          nfig = nfig+1;     figure(nfig)  
          plot(x,u(:,1),'LineWidth',2);    axis([0 L 0 400]);  
          M = moviein(Nt);  
          for i = 1:Nt 
            plot(x,u(:,i),'LineWidth',2);  axis([0 L 0 400]); 
            M(:,i) = getframe; 
          end 
% 
%   play the movie one more time and show initial and final profiles 
          movie(M,0);   hold on; 
          plot(x,u(:,1),'LineWidth',2);    grid on;   
          title('HT1D\_SOV2:  Bar Temperature for Initial and Final Times (Example 10.2)');  
          xlabel('Distance (m)'),ylabel('Temperature (C)');       
          gtext('initial'),gtext('final') 
          hold off 
      end 
% 
%   end of problem 
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Example 10.3  --  Heat Transfer in a Finite Bar with Time Dependent BCs 

Problem Description: 

A laterally insulated bar of length L has some temperature distribution, f(x).  At time t = 0, the 
right side is cooled in such a way that the temperature drops to zero in an exponential fashion.  
The left endpoint temperature is held fixed at uL.  Find the temperature distribution, u(x,t), for 
this system given the following specific conditions: 

0
0

R Lo t
L R R

u u
u 100 C, u (t) u e and f (x) x u

L
−µ −⎛ ⎞

= = = ⎜ ⎟
⎝ ⎠

L+  

where .  Also let 
0

o
Ru 400 C= 2

pk c 0.0001 m sα = ρ =  and L = 1 m for numerical evaluation 
and plotting of the solution within Matlab, and determine the sensitivity of the result to the 
exponential decay rate by using two different values of µ  (0.001 s-1 for slow decay and 0.005 s-1 
for rapid decay). 

Problem Solution: 

Theoretical Development 

This problem can be stated formally in mathematical terms as 

0

t
t xx L Ru (x, t) u (x, t) with u(0, t) u and u(L, t) u e−µ= α = =  

and 

0R L
L

u u
u(x,0) f (x) x u

L
−⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

 

Since the BCs are not homogeneous and one of the inhomogeneous terms is time dependent, the 
techniques used in Example 10.1 or Example 10.2 are not sufficient, by themselves, to solve this 
problem.  Instead, we will employ the Eigenfunction Expansion Method to obtain an 
approximate solution for this situation. 

To remove the constant boundary term on the left hand side of the bar, let’s break the overall 
temperature distribution into the sum of a transient solution and a steady state solution, or 

u(x, t) v(x, t) w(x)= +  

Following the same steps as performed in Example 10.2, substitution of this expression into the 
defining PDE and BCs gives the transient problem as  

0

t
t xx Rv v with v(0, t) 0, v(L, t) u e , and v(x,0) f (x) w(x)−µ= α = = = −  

and the steady state problem as 

  Lw '' 0 with w(0) u and w(L) 0= = =

Note that the transient problem still has inhomogeneous BCs; thus, the standard Separation of 
Variables (SOV) method is not suitable. 
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Focusing first on the steady state solution, we have after two integrations 

1 2w(x) C x C= +  

and applying the boundary conditions gives 

L 1 2 2at x 0, w(0) u C (0) C or C u= = = + L=  

L
1 L 1

uat x L, w(L) 0 C L u or C
L

= = = + = −  

Thus, the steady state solution is simply a linear profile given by 

Luw(x) (L x)
L

= −  

Now addressing the transient problem, we see we were not able to completely remove the 
inhomogeneous BCs.  In fact, in this case, the right BC is time dependent.  This is a specific 
example of a linear homogeneous PDE with an inhomogeneous BC, and the Eigenfunction 
Expansion Method (as discussed previously) should be appropriate for this problem. 

Following the previous development, we let 

  n n
n

v(x, t) a (t) (x)= φ∑

where the  are the orthogonal eigenfunctions of the “associated” Sturm-Liouville problem 
with homogeneous BCs which, for this case, is given by 

n (x)φ

2''(x) (x) 0 with (0) 0 and (L) 0φ + λ φ = φ = φ =  

with solution 

n n n
n(x) sin x and for n 1, 2,
L
π

φ = λ λ = =  

Therefore, the eigenfunction expansion for the transient solution becomes 

 n n n
n

nv(x, t) a (t)sin x with for n 1, 2,
L
π

= λ λ = =∑  

and the boundary and initial conditions are 

0

t
1 2v(0, t) g (t) 0, v(L, t) g (t) u eR

−µ= = = =  

and 

 0 0R L RL
L

u u uuv(x,0) h(x) f (x) w(x) x u (L x) x
L L
−⎛ ⎞ ⎛ ⎞= = − == + − − =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ L
 

From our previous development, the an(t) expansion coefficients satisfy 

2
n n n n n

d a (t) a (t) g (t)
dt

+ αλ = β  
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with  defined by n nand g (t)β

0

n nn
n n 2 1

2 and g (t) ( 1) g (t) g (t) ( 1) u e
L

t
R

−µαλ
β = − = − − = −  

and the initial condition for an(t) is given by 

0

L L
n n n n0 0

2 2a (0) a v(x,0)sin xdx h(x)sin xdx
L L

= = λ = λ∫ ∫  

This is a first order linear ODE with integrating factor 
2 2n n
dt te eαλ αλ∫ = .  Therefore, we have 

{ }2 2 2
n n nt t t (2

n n n n n
d de a (t) e a (t) e a (t) C e
dt dt

αλ αλ αλ αλ −µ2
n )t⎡ ⎤= + αλ =

⎣ ⎦
 

where 

  
0

n
n n RC ( 1) u= β −

Integration of this equation over the interval 0 to t gives 

 
2 2
n n2

n
0

t
( )t ( )t

t
n n n n2 2

n n0

e ee a (t) a C C
αλ −µ αλ −µ

αλ 1−
− = =

αλ − µ αλ − µ
 

or 

 
2
n2

n
0

tt
t

n n n 2
n

e ea (t) a e C
−αλ−µ

−αλ
⎡ ⎤−

= + ⎢ ⎥
αλ − µ⎢ ⎥⎣ ⎦

 

The only remaining unknown is the value for .  Inserting the expression for h(x) into the 

above expression for  gives 
0na

0na

 

0
0

0 0

L LR
n 0 0

L2 2
R R n
2 2

0

u2 n x 2 n xa h(x)sin dx x sin dx
L L L L L

2u 2uL n x L n x Lsin x cos ( 1)
n L n L nL L

π π
= =

⎡ ⎤ ⎡ ⎤π π⎛ ⎞ ⎛ ⎞= − = −⎢ ⎥⎜ ⎟ ⎜ ⎟ −⎢ ⎥π π π⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦

∫ ∫
 

or 

 0
0

n 1
R

n
2u ( 1)a

n

+−
=

π
 

With this result, we have a complete set of expressions that define the expansion coefficients for 
the v(x,t) problem.  This transient solution, coupled with the steady state solution, w(x), gives 
the final temperature profile, u(x,t), for this system.  For ease of implementation, a summary of 
the pertinent equations is listed below: 

  u(x, t) v(x, t) w(x)= +
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with 

 
2
n2

n
0

tt
t

n n 2
n n

e ev(x, t) a e C sin x
−αλ−µ

−αλ
⎧ ⎫⎡ ⎤−⎪ ⎪= + ⎢ ⎥⎨ ⎬

αλ − µ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ nλ  

 Luw(x) (L x)
L

= −  

where 

     0 0
0

n 1
R n R n 1

n n n
2u 2 u( 1) na C ( 1) for

n L L

+
+ n 1, 2,

αλ− π
= = − λ =

π
=  

Matlab Implementation 

The solution for this problem has been implemented and evaluated in Matlab file ht1d_sov3.m, 
and the resultant temperature profiles for various times have been plotted in Figs. 10.3 and 10.4, 
where the two sets of profiles are associated with the different values of the decay rate used in 
the simulations.  The coding algorithm used here is similar to that discussed for Example 10.2 
(see listing of ht1d_sov2.m in Table 10.2), with the listing of the Matlab simulation file for the 
current problem given in Table 10.3. 

In the simulations shown here, we again see that the series expansion is not convergent because 
the nonzero right boundary condition cannot be achieved with the expansion functions used in 
this problem.  The induced error is especially apparent at the initial time and early in the 
transient, when the difference between the actual boundary temperature and the predicted zero 
temperature is large.  As the transient proceeds and the real endpoint temperature approaches 
zero, the spatial oscillations observed near the right boundary tend to subside, and the overall 
spatial temperature profile approaches expected conditions.  The case with the rapidly decaying 
boundary temperature shows better agreement with expected behavior earlier in the transient, 
simply because the zero boundary value imposed by the expansion functions is reached more 
rapidly  --  comparing Figs. 10.3 and 10.4 shows this quite clearly.  Even with the obvious 
inaccuracy at the right boundary point, the time evolution of the temperature profiles and the 
actual temperature values near the left boundary follow expected behavior, with the temperature 
profile eventually approaching the steady state linear temperature distribution at long times        
(t = 80 min in Figs. 10.3 and 10.4). 

This example represents a good illustration of the Eigenfunction Expansion Method and the 
Matlab file ht1d_sov3.m, once again, demonstrates how to numerically evaluate a relatively 
complicated infinite series expansion to assist in the visualization and analysis of the analytical 
solution to a given problem.  Understanding this Matlab implementation is important since this 
same scheme can be applied to other similar problems of interest to the individual student. 

Note:  Finally, the reader should also see Example 11.4 in the next section of notes for another 
solution approach for this particular problem, where a numerical technique referred to as the 
State Space Method is used.  Comparison of the two solutions shows that the analytical method 
is indeed approximate, but overall it does quite well in establishing the general space-time 
temperature profile for this system (near the left end of the bar the predictions are very good). 
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Fig. 10.3  Temperature profiles from Example 10.3 with slowly decaying uR(t). 

 
Fig. 10.4  Temperature profiles from Example 10.3 with rapidly decaying uR(t). 

 
Table 10.3  Listing of Matlab file ht1d_sov3.m. 

%                                                                                
%   HT1D_SOV3.M   Heat Transfer in a 1-D Finite Bar (Example 10.3 in Class Notes)   
%                                                                                
%   Analytical Solution using Separation of Variables (SOV) to the following problem: 
%      ut(x,t) = alf*uxx(x,t)     
%   where 
%      u(L,t) = g(t) = ur*exp(-mu*t)    --- decaying temperature on right side 
%      u(0,t) = ul                      --- fixed temp on left    
%      u(x,0) = f(x) = (ur-ul)x/L + ul  --- linear profile   
%   has solution given by 
%     u(x,t) = v(x,t) + w(x)      
%   where v(x,t) is the transient solution and w(x) is the steady state solution. 
% 
%   The goal here is to evaluate and visualize the temperature profile in the  
%   1-D finite bar of length L where the RHS endpoint temperature is time 
%   dependent.  The Eigenfunction Expansion Method is used to approximate the  
%   v(x,t) solution (see class notes).                           
%                 
%   File generated by J. R. White, UMass-Lowell (Aug. 2003) 

Lecture Notes for Math Methods by Dr. John R. White, UMass-Lowell (updated Sept. 2004) 



Math Methods  --  Section X:  Analytical Solution of PDEs 26

 
% 
%   getting started 
      clear all,   close all,   nfig = 0; 
%                                                                                
%   problem data                                                                 
      alf = 0.0001;     % m^2/s  thermal diffusivity                              
      L = 1;            % m      length of bar                                    
      ul = 100;         % C      left (fixed) temp of bar                         
      ur = 400;         % C      initial temp on right                            
      maxt =  80;       % max terms in expansion 
      tol = 0.001;      % tolerance used to stop series expansion 
      imu = menu('Select decay rate of right side temp', ... 
                 'Use slow decay rate (mu = 0.001 1/s)', ... 
                 'Use rapid decay rate (mu = 0.005 1/s)'); 
      if imu == 1,   mu = .001;   end     
      if imu == 2,   mu = .005;   end     
% 
%   vector of points to evaluate function  
      Nx = 101;   x = linspace(0,L,Nx)'; 
% 
%   w(x) is the steady state solution 
      w = ul*(L-x)/L;                          
% 
%   calc ln, ano and cn 
      for n = 1:maxt                                  
        ln(n) = n*pi/L;    ano(n) = (2*ur/(pi*n))*(-1)^(n+1); 
        cn(n) = (2*alf*ur*ln(n)/L)*(-1)^(n+1); 
      end              
% 
%   define time points and initialize space-time distribution 
      Nt = 5;    tt = [0 600 1200 2400 4800];   % time in seconds 
      u = zeros(Nx,Nt); 
% 
%   start loop over time points 
      for i = 1:Nt                                                      
        t = tt(i);   bb = -mu*t;  cc = -alf*t;  v = zeros(Nx,1); 
        n = 0;   mrerr = 1.0; 
          while mrerr > tol   &   n < maxt 
            n = n+1;  k1 = exp(bb);  k2 = exp(cc*ln(n)*ln(n));  k3 = alf*ln(n)*ln(n); 
            vn = (ano(n)*k2 + cn(n)*(k1-k2)/(k3-mu))*sin(ln(n)*x); 
            v = v + vn;    
            j = find(v);                    % finds indices of nonzero values of v(x) 
            mrerr = max(abs(vn(j)./v(j)));  % compute max relative error 
          end 
        u(:,i) = v + w; 
        disp([' Needed ',num2str(n),' terms for convergence at t = ',num2str(t),' s']) 
      end 
% 
%   set color and marker code for creating plots 
      Ncm = 6; 
      scm = ['r-';      % red solid 
             'g:';      % green dotted 
             'b-';      % blue solid 
             'm:';      % magenta dotted 
             'c-';      % cyan solid 
             'y:'];     % yellow dotted 
% 
%   plot curves of u for various times 
      st = zeros(Nt,9); 
      if Nt < 7  
        nfig = nfig+1;   figure(nfig)                         
        for i = 1:Nt 
          h(i) = plot(x,u(:,i),scm(i,:),'LineWidth',2); hold on  
          st(i,:) = sprintf('%5.1f min',tt(i)/60); 
        end  
        hold off  
        axis([0 1 0 400]);                         
        title('HT1D\_SOV3:  Bar Temp Profile with g(t) = ur*exp(-mu*t) (Example 10.3)')   
        grid,xlabel('Distance (m)'),ylabel('Temperature (C)')                       
        legend(h,char(st)) 
        text(0.04,20,['mu = ',num2str(mu),' 1/s'])  
      end 
% 
%   end of problem 
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Example 10.4 – Heat Transfer in a Cylindrical Bar with Homogeneous BCs 

Problem Description: 

A long solid cylinder has an initial temperature profile given by f(r).  If the rim temperature is 
zero for t > 0, find the temperature distribution, u(r,t), for this system. 

Problem Solution: 

This problem calls for a classic Separation of Variables (SOV) solution scheme since the 
defining heat conduction equation (i.e. the Diffusion Equation) and the boundary conditions are 
both homogeneous.  Formally, this problem can be stated mathematically as 

  2
t ru (r, t) u(r, t) with u (0, t) 0, u(R, t) 0, and u(r,0) f (r)= α∇ = = =

where the boundary condition at r = 0 says that the temperature gradient at this point is zero 
(symmetry condition).  However, in 1-D cylindrical geometry the Laplacian operator can be 
expanded as 

 
2

2
2

1 (1 D cylindrical geometry)
r rr

∂ ∂
∇ = + −

∂∂
 

and the defining PDE for this heat conduction problem with no internal energy generation 
becomes 

 
2

2
t r2

1 1u (r, t) u(r, t) u(r, t) u u
r r rr

⎛ ⎞∂ ∂ ⎛ ⎞= α∇ = α + = α +⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠⎝ ⎠
r r  

Now, following the general outline for the classical SOV method, let’s first assume a solution of 
the form 

u(r, t) F(r)G(t)=  

Substitution of this expression into the PDE gives 

 1FG F'' F ' G
r

• ⎛ ⎞= α +⎜ ⎟
⎝ ⎠

 

where, as before, the “dot” notation implies a time derivative and the “primes” indicate spatial 
derivatives. 

This equation is separable, or 

 2

1F '' F ' Gr k
F G

•+
= = = −λ

α
 

where k is referred to as a separation constant, and we have immediately forced this constant to 
be negative, since positive or zero values lead to trivial results (the reader should prove this latter 
statement if any doubt exists).  As discussed for Example 10.1, the implication here is that, since 
the LHS is only a function of r and the RHS is only a function of t, for these terms to be equal to 
each other for all r and t, they must both be constants  -  which is indicated by the separation 
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constant, .  This process breaks the original PDE into two separate ODEs; one for the 
G(t) function and another for F(r).  The two equations are 

2k = −λ

 2 21G G 0 and F'' F ' F
r

•
+ αλ = + + λ = 0

1

0
0 0

 

where the specification of the F-problem is completed with the conversion of the original BCs to 
the new notation.  Formally, we have 

ru (0, t) 0 G(t)F '(0) 0 or F '(0) 0

u(R, t) 0 G(t)F(R) 0 or F(R) 0

= ⇒ = =

= ⇒ = =
 

Thus, the G-problem is a simple first order ODE with solution 
2tG(t) Ce−αλ=  

and the F-problem is a Sturm-Liouville problem (homogeneous ODE with homogeneous BCs).  
We also recognize the spatial problem as a special case of an ordinary Bessel equation of order 
zero, or 

2 2 2r F '' rF ' ( r 0)F 0+ + λ − =  

Thus, the general solution for the spatial part of the problem can be written as 

  1 0 2 0F(r) C J ( r) C Y ( r)= λ + λ

where J0 and Y0 are zero-order ordinary Bessel functions of the first and second kind, 
respectively.  Also, we can compute the gradient, , as F '(r)

1 1 2 1F '(r) C J ( r) C Y ( r)= − λ λ − λ λ  

where the standard derivative formulas for the ordinary Bessel functions have been used, or 

  0 1 0J '( r) J ( r) and Y '( r) Y ( r)λ = −λ λ λ = −λ λ

Now applying the boundary conditions to the general solution of the spatial problem, we have at 
the center of the solid rod, 

1 2F '(0) 0 C (0) C ( )= = − λ × − λ × −∞  

where we have used the facts that J1(r) approaches zero as  and Yr → 1(r) approaches negative 
infinity as .  Thus, the only way to satisfy this condition is to let .  With this 
condition the spatial solution profile reduces to 

r → 2C =

1 0F(r) C J ( r)= λ  

Now, the second boundary condition at r = R gives 

  1 0F(R) 0 C J ( R)= = λ

Since C1 = 0 would give a trivial solution, we must let 0J ( R) 0λ =  to satisfy this condition.  As 
we have seen previously, Jn(r) is an oscillatory function and it has an infinite number of zeros, 
which we denote as  for .  mnβ m 1, 2,= mnβ  represents the mth value of r for which nJ (r) 0= . 
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Therefore, from the above discussion, we have 

0 0 m0J ( R) J ( ) 0λ = β =  

as the eigencondition for this problem.  This leads to 

n0
n n 0 nand F (r) J ( r) for n 1, 2,

R
β

λ = = λ =  

as the allowed eigenvalues and eigenfunctions for this problem. 

Since we have multiple values of  that satisfy the spatial problem, we also have multiple 
solutions for the G-problem.  Rewriting the above G(t) solution, using the subscript n to denote 
the n

nλ

th solution, gives 

  
2
nt

n nG (t) C e−αλ=

With known distribution functions for the spatial and temporal profiles, the desired temperature 
distribution can be written as  

2
nt

n n n n 0 n
n n n

u(r, t) u (r, t) F (r)G (t) C J ( r)e−αλ= = = λ∑ ∑ ∑  

where we have written the general solution in terms of a linear combination of the individual 
solutions. 

The only remaining unknown left to be determined is the expansion coefficient, Cn.  However, 
we still have an initial condition for this problem that has not yet been used.  In particular, for     
t = 0 in the final expression for u(r,t), we have 

 n0
n 0

n
u(r,0) f (r) C J r

R
β⎛ ⎞= = ⎜ ⎟

⎝ ⎠
∑  

However, this is just a Fourier-Bessel series expansion for f(r) in terms of a set of orthogonal 
basis functions.  The unknown expansion coefficients, Cn, can be determined by using the 
orthogonality property of the expansion functions.  In particular, if we multiply both sides of the 
last expression by  and integrate over 0 < r < R [recall that the weight function for this 
situation is p(r) = r], we have 

(0 mrJ rλ )

 
R Rm0 m0 n0

0 n 0 00 0
n

rf (r)rJ dr C rJ r J r dr
R R

β β⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑∫ ∫ R
β  

or 

 
R n0

n 02 02
1 n0

1C f (r)rJ
RR J ( )

2

β⎛ ⎞= ⎜ ⎟
⎝ ⎠β

∫ r dr  

where the denominator represents the norm of the J0 Bessel functions, or 
2R 2m0 n0

0 0 1 n00

RrJ r J r dr J ( )
R R 2

β β⎛ ⎞ ⎛ ⎞ = β δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ mn  
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Recall that this normalization result was developed formally as part of Example 9.3.  Finally, 
given a specific initial distribution, f , the final expression for C(r) n can be evaluated for the 
desired expansion coefficients, thus completing the problem. 

Since no specific initial temperature profile was given and no numerical data were specified for 
this problem, we cannot formally carry this solution any further (one needs numerical data for 
implementation into Matlab, for example).  However, we can summarize the problem by 
gathering the formulas of interest for this case, giving 

  ( )
2
nt

n 0 n
n

u(r, t) C J r e−αλ= λ∑

with 

 ( )
Rn0

n n 2 2 0
1 n0

2and C f (r)rJ r dr
R R J ( )

β
λ = = λ

β ∫ 0 n  

where  are the zeros of the Jn0β 0(r) Bessel function. 

With specific values for α and R, and a given initial temperature profile, f(r), these expressions 
lead to an exact analytical solution, u(r,t), for this problem. 
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Example 10.5  --  Steady State Heat Transfer in a 2-D Block 

Problem Description: 

Consider a long rectangular bar with a thermal conductivity 
of 1 W/m-C.  As shown in the sketch, the top surface is 
exposed to a convective environment with h = 100 W/m2-C 
and T∞ = 100 °C.  The other three sides are held at a fixed 
temperature of Tw = 50 °C. 

For this situation, compute and plot the 2-D temperature 
distribution, T(x,y), and determine the heat transfer on each 
face of this bar.  We will actually solve this problem using 
several techniques, but here we will focus on an analytical 
solution using the separation of variables (SOV) method. 

From symmetry, we can draw the geometry of interest as shown to the left.  
Within the block, heat transfer is via conduction and, for steady state, the 
defining balance equation becomes (with no internal energy generation) 

2T 0∇ =  

which, for Cartesian geometry, can be written as 
2 2

2 2 T(x, y) 0
x y

⎛ ⎞∂ ∂
+ =⎜ ⎟∂ ∂⎝ ⎠

 

 

For convenience, we will define u = T – Tw.  With this definition the complete mathematical 
description of the problem can be written as 

xx yyu u+ = 0  

with the four BCs written as 

        left BC:     ux(0,y) = 0  right BC:     u(Lx/2,y) = 0 

  bottom BC:     u(x,0) = 0    top BC:  ( )y y y eku (x, L ) h u(x, L ) T− = −

T∞= −

 

where we have defined T T .   e w

This is the problem we want to solve, with the following parameters: 

Lx = 0.06 m   Ly = 0.09 m 

k = 1 W/m-C   h = 100 W/m2-C  

Tw = 50 °C   T∞ = 100 °C   Te = 50 °C 
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Problem Solution: 

Theoretical Development 

We first note that the PDE and the BCs in the x-direction are homogeneous.  Thus, a classical 
solution via the SOV method should work.  As such, we can follow the traditional outline as 
given previously.  First we let 

u(x, y) F(x)G(y)=  

and then, upon substitution into the defining PDE, we have 
F G FG 0′′ ′′+ =  

and dividing by FG gives 

2F G
F G
′′ ′′

= − = −λ  

where λ is the separation constant (note that the choice of the sign distribution was made based 
on the fact that the x-direction has homogeneous boundary conditions).  This expression now 
leads to two separate ODEs, as follows: 

x-direction 

The defining ODE in the x-direction is 
2F F′′ + λ = 0

λ

 

with general solution 

1 2F(x) A sin x A cos x= λ +  

The left boundary for this problem (at x = 0) is a line of symmetry, which gives 

xu (0, y) 0 which leads to F (0) 0′= =  

Taking the indicated derivative 

1 2F (x) A cos x A sin x′ = λ λ − λ λ  

and substitution into the BC gives 

1 1F (0) 0 A (1) 0 or A 0′ = = λ − =  

Thus, the solution to the F-problem reduces to 

  2F(x) A cos x= λ

Now applying the right BC, we have 

x xu(L 2, y) 0 which leads to F(L 2) 0= =  

or 

( )x 2F L 2 0 A cos L 2= = λ x  
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But we know that the cosine function is periodic with an infinite number of zero crossings.  
Also, since the zeros occur at odd integer multiples of π/2, we have 

xcos L 2 cos(2n 1) 2 0 for n 1, 2, 3,λ = − π = =  

which gives the following eigenvalues for this problem  

 n
x

(2n 1)
L
− π

λ =  

With an infinite number of eigenvalues, we can rewrite F(x) with an n subscript as 

  n nF (x) cos x= λ

where we have arbitrarily set the coefficient to unity. 

y-direction 

Now, focusing on the y direction, the ODE of interest is  
2G G′′ − λ = 0

λ

nλ

nλ

e

 

which has the general solution 

1 2G(y) C sinh y C cosh y= λ +  

The bottom BC (at y = 0) has a fixed temperature 

u(x,0) 0 which leads to G(0) 0= =  

and, upon substitution, we have 

2 2G(0) 0 C (1) or C 0= + =  

This leaves 

n nG (y) sinh y= λ  

where again we have set the normalization to unity and we have inserted the subscript n to imply 
that there is a different solution for each λn for all integer n > 0. 

With explicit expressions for F(x) and G(y), we can write the nth solution as  

n n n n nu (x, y) F (x)G (y) B cos x sinh y= = λ  

and, since the original PDE is linear, then we can form a general solution as the linear 
combination of the individual solutions, or 

n n n
n 1 n 1

u(x, y) u (x, y) B cos x sinh y
∞ ∞

= =

= = λ∑ ∑  

Now, we still need to satisfy the top BC, which says that  

y y yku (x, L ) hu(x, L ) hT− = −  

Written out in detail, this becomes 
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n n n n y n n n y e
n 1 n 1

k B cos x cosh L h B cos x sinh L hT
∞ ∞

= =

− λ λ λ = λ λ −∑ ∑  

To evaluate this expression for the unknown Bn coefficients, we multiply both sides by mcos xλ , 
perform a little algebra to collect similar terms, and integrate over the x domain, 

( )
x xL 2 L 2

n n y n n y m n e m
n 1 0 0

B hsinh L k cosh L cos x cos xdx hT cos xdx
∞

=

λ + λ λ λ λ = λ∑ ∫ ∫  

To actually do the integral on the LHS, we note that 
x

x
L

L 2 2
m n m n

m n
m n m n0 0

sin( )x sin( )xcos x cos xdx
2( ) 2( )

⎡ ⎤λ − λ λ + λ
λ λ = +⎢ ⎥λ − λ λ + λ⎣ ⎦

∫  for m n  ≠

But, with n (2n 1) Lλ = − π x , we have the following relationships: 

x
m n

L( ) (2m 1) (2n 1) 2(m n) (m n)
2 2 2 2

π π π
λ − λ = − − − = − = − π  

( )x
m n

L( ) (2m 1) (2n 1) 2(m n) 2 (m n
2 2 2 2

π π π
λ + λ = − + − = + − = + − π1)    

and s , where p = integer.  Thus, the LHS is zero for m ≠ n. in(p ) 0π =

When, m = n , we have 
x

x
L

L 2 2
2 m x

m
m m0 0

x sin 2 x L sin(2m 1) Lcos xdx
2 4 4 4 4

⎡ ⎤λ −
λ = + = + =⎢ ⎥λ λ⎣ ⎦

∫ xπ  

Thus, we see that the orthogonality relationship can be summarized with the following 
expression: 

xL 2
x

m n mn x
0

0 m
Lcos x cos xdx L4 m n

4

n≠⎧
⎪λ λ = δ = ⎨

=⎪⎩
∫  

which greatly simplifies the LHS of the above equation. 

Now, focusing on the RHS, we have 

       
x

x
L

L 2 2 m 1e e
e

x m x m0 0

(2m 1) x hT (2m 1) x hT hThT cos dx sin sin(2m 1) ( 1)
L L 2

+− π − π π
= = − =

λ λ∫ e

m
−

λ
 

Now, equating the LHS and RHS, we have 

m 1x e
m m y m m y

m

L hB (hsinh L k cosh L ) ( 1)
4

+⎛ ⎞λ + λ λ = −⎜ ⎟
T

λ⎝ ⎠
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or 
m 1

e
m

x m m y m m y

( 1) 4hTB
L (hsinh L k cosh L

+−
=

λ λ + λ λ )
 

which completes our derivation.  The expressions for λn and Bn, substituted into the series 
representation for u(x,y), gives the formal SOV solution for this problem. 

The original problem specification also requested an evaluation of the heat loss at the boundaries 
of the block.  With the above analytical solution, we can also compute the heat flux everywhere 
as follows: 

ˆ ˆq k T k T(x, y)i k T(x, y) j
x y
∂ ∂

= − ∇ = − −
∂ ∂

 

and, since T = u + Tw, we have 

ˆ ˆq k u(x, y)i k u(x, y) j
x y
∂ ∂

= − −
∂ ∂

 

Writing this vector quantity in component form, we have 

x y
ˆ ˆq q i q= + j

ny ny

 

where 

x n n n
n 1

q k B sin x sinh
∞

=

= λ λ λ∑      and     y n n n
n 1

q k B cos x cosh
∞

=

= − λ λ λ∑  

Note that this vector function can be plotted with the quiver command in Matlab. 

We can also compute the total rate at which energy crosses a boundary, as follows: 

( )
x xL 2 L 2

top y y y n n x n y
n 10 0

ˆq q(x, L ) ndx q (x, L )dx k B sin L 2 cosh L
∞

=

= ⋅ = = − λ λ∑∫ ∫  

( )
xL 2

right x x n n x n y
n 10

q q (L 2, y)dy k B sin L 2 cosh L 1
∞

=

= = λ∑∫ λ −  

xL 2

bottom y n n x
n 10

q q (x,0)dx k B sin
∞

=

= = − λ∑∫ L 2

0

 

yL

left x
0

q q (0, y)dy= =∫  

Here, q has units of watts per unit length into the z direction, where for z = 1 m, we get q in W. 

Note also that we can compute the heat transfer along the top surface with Newton’s law of 
cooling, or 

( ) ( )
xL 2

top y e n n x n yconv
n 1 n0

1q h u(x, L ) T dx h B sin L 2 cosh
∞

=

= − = λ
λ∑∫ Lλ  
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Matlab Implementation 

The above expressions for the temperature profile, heat flux distribution, and heat loss rates were 
implemented into Matlab file block2d_sov1.m as listed in Table 10.4, and a series of graphical 
results from this program are plotted in Figs. 10.5 and 10.6.  Matlab’s meshgrid command was 
used to lay out the x,y spatial grid for evaluation of the analytical expressions for T(x,y) and the 
heat fluxes, and the series expansion was continued until the maximum change in temperature 
and heat flux was less than 0.01 (with units of C and W/m2, respectively) or the maximum 
number of terms was reached.   

Note:  It turns out that this problem has a very large temperature gradient and corresponding heat 
flux in the upper right corner of the model, and there were some additional subtle numerical 
considerations (associated with possible round off errors) that were not handled as effectively as 
possible inside block2d_sov1.m.  Thus, in all cases, convergence to the desired level of 0.01 was 
not achieved  --  that is, we hit the maxt limit each time.  However, the qualitative results given 
here should be just fine… 

 

   

   
Fig. 10.5  Several views for T(x,y) in Example 10.5. 
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Focusing on the base results, we have plotted four different views of the temperature distribution 
in Fig. 10.5 and a 3-D surface plot of the magnitude of the heat flux, 2 2

xq q q= + y , in Fig. 10.6.  
All the temperature profiles are as expected, with a peak temperature near 86 C in the center of 
the block along the upper boundary.  The temperature drops off towards 50 C as one moves 
away from the peak, either towards the right boundary at x = Lx/2 or the bottom boundary at       
y = 0.  Because we forced a fixed temperature of 50 C along the bottom and right boundaries, 
this behavior was expected.   

 

 
Fig. 10.6  Distribution of the heat flux magnitude for the 2-D block example. 

 

There is, however, some interesting behavior in the upper right corner of the model.  Recall that, 
on the right face, we have forced a fixed temperature of Tw = 50 C, and on the top surface (just 
an infinitesimal distance away), we have a convective condition with T∞ = 100 C.  These 
constraints force a very large temperature gradient in the area where the two surfaces intersect.  
This is especially apparent in Fig. 10.6 where the surface plot of the heat flux magnitude is given  
--  and clearly we can see the large peak in the upper right corner.  Note that, even though this 
behavior is not overly realistic, it is consistent with the imposed BCs for the given problem (in a 
realistic illustration, the right side temperature would be a function of y).   

Quantitative results for the heat loss or gain from each side of the 2-D block were also computed 
and the actual output from block2d_sov1.m is reproduced below: 
  Block2D_SOV1 -- Heat transfer (W) across boundaries for the right half of a 2-D block  
    in top boundary (conduction):      61.70   
    in top boundary (convection):      62.30   
    out right boundary:                60.94   
    out bottom boundary:                0.75   
    out left boundary:                  0.00   
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Clearly, all the energy enters the block through the top surface and it leaves from the right and 
bottom surfaces  --  with the lion’s share of the overall energy transfer taking place near the 
upper right corner of the block.  Since the left boundary in the half-block model is a line of 
symmetry, there is no heat transfer along this surface.  Also note that both the convective and 
conductive heat gains along the top boundary were computed.  Of course, the two values should 
be identical, but because of numerical difficulties and the large gradients seen here, a small 
difference is observed.  This observation is fairly typical, where usually the convective result, 
which involves integration (rather than differentiation), is somewhat more accurate.  Here, the 
observed difference is nearly negligible… 

Finally, we note that this same problem is also solved again in Section XI of these notes using 
the Finite Difference (FD) method and in the Appendix using FEMLAB and Matlab’s PDE 
Toolbox.  Thus, you should be sure that you have a good handle on this problem, since it will be 
used again for comparison purposes as we discuss other techniques for solution of PDEs of this 
type (using numerical schemes). 

 

Table 10.4  Listing of Matlab file block2d_sov1.m. 

 
%                                                         
%   BLOCK2D_SOV1     2-D Heat Conduction in a Rectangular Block 
%                                                         
%   Analytical Soln using Separation of Variables (SOV) to the following heat  
%   conduction problem: 
%     uxx(x,y) + uyy(x,y)  = 0    with ux(0,y) = 0   u(Lx/2,y) = 0             
%                                       u(x,0) = 0  -kuy(x,Ly) = h(u - Te) 
%     where  u(x,y) = T(x,y) - Tw   and   Te = Tinf - Tw   
%    
%   The goal here is to plot the analytical solution a variety of ways to 
%   help visualize the 2-D temperature distribution.  We also want to compute 
%   the heat loss or gain across each face of the rectangular block.  Only the  
%   right half of the block is modeled  --  a symmetry condition at x = 0  
%   handles this (note that the heat flows given are only for the portion of  
%   the block modeled). 
% 
%   File prepared by J. R. White, UMass-Lowell (Aug. 2003) 
% 
 
% 
%   getting started 
      clear all,   close all,   nfig = 0; 
%                                                                      
%   problem data                                                      
      Tw = 50;         % wall temperature on left, bottom, and right sides (C) 
      Tinf = 100;      % air temperature on top of block (C) 
      Te = Tinf-Tw;    % difference between air and wall temps (C) 
      h = 100;         % heat transfer coeff (W/m^2-C) 
      k = 1;           % thermal conductivity of block (W/m-C) 
      Lx = 0.06;       % width of block in x direction (m) 
      Ly = 0.09;       % height of block in y direction (m) 
      maxt = 50;       % max number of nonzero terms 
      tol = 0.01;      % convergence limit for series expansion (absolute temp diff) 
% 
%   points to evaluate function (domain of interest is a rectangle) 
      Nx = 31;    x = linspace(0,Lx/2,Nx);   
      Ny = 37;    y = linspace(0,Ly,Ny); 
      [xx,yy] = meshgrid(x,y);                                        
% 
%   calc eigenvalues and expansion coeffs 
%   Note: Since the bn values become so small so quickly, we can expect that  
%         numerical errors may become a problem (small # * large # in series expansion).   
%         Because of this I really should implement the series expansion differently 
%         than given here --- use recursive form.  However, our focus here is 
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%         simply to get a reasonable visualization of the temperature and heat flux 
%         distributions, so we will keep the implementation on the simple side (and 
%         just be careful to make sure that the numerical errors do not affect the  
%         qualitative observations) 
      dd = pi/Lx;     cc = 4*h*Te/Lx;                      
      for n = 1:maxt                             
        ln(n) = (2*n-1)*dd; 
        bn(n) = (-1)^(n+1)*cc/ln(n)/(h*sinh(ln(n)*Ly) + k*ln(n)*cosh(ln(n)*Ly)); 
      end                                         
% 
%   determine spatial temperature distribution               
      n = 0;   merr = 1.0;   u = zeros(Ny,Nx);  
      while merr > tol   &   n < maxt 
        n = n+1;   un = bn(n)*cos(ln(n)*xx).*sinh(ln(n)*yy); 
        u = u + un;    merr = max(max(abs(un)));   
      end 
      fprintf(1,'\n  Needed %3i terms for convergence of u(x,y) \n\n',n) 
% 
%   now form actual temperature distribution of interest  --  T(x,y) 
      T = u + Tw; 
% 
%   plot T(x,y) for a few y values               
      nfig = nfig+1;  figure(nfig) 
      plot(x*100,T(Ny:-8:13,:),'LineWidth',2),grid 
      title('Block2D\_SOV1:  T(x) profiles for various y values') 
      xlabel('x location from block centerline (cm)');     
      ylabel('Temperature (C)')                                  
      for j = Ny:-8:13,  gtext(['y = ',num2str(y(j)*100),' cm']);   end    
% 
%   various 3-D plots                            
      nfig = nfig+1;  figure(nfig) 
      surf(xx*100,yy*100,T), shading interp, colorbar 
      axis([0 Lx*100/2 0 Ly*100 50 90]) 
      title('Block2D\_SOV1:  T(x,y) in 2-D block') 
      xlabel('x location (cm)');   ylabel('y location (cm)') 
      zlabel('Temperature (C)')                                  
% 
      nfig = nfig+1;  figure(nfig) 
      surf(xx*100,yy*100,T), shading interp, colorbar, hold on 
      [cc,hh] = contour3(x*100,y*100,T, [80 70 60 55 52.5]); 
      clabel(cc), set(hh,'EdgeColor','k') 
      axis([0 Lx*100/2 0 Ly*100 50 90]) 
      title('Block2D\_SOV1:  T(x,y) in 2-D block') 
      xlabel('x location (cm)');   ylabel('y location (cm)') 
      zlabel('Temperature (C)'),   hold off                                  
% 
      nfig = nfig+1;  figure(nfig) 
      surf(xx*100,yy*100,T), shading interp, view(2), colorbar, hold on 
      [cc,hh] = contour3(x*100,y*100,T, [80 70 60 55 52.5]); 
      clabel(cc), set(hh,'EdgeColor','k') 
      axis([0 Lx*100/2 0 Ly*100 50 90]) 
      title('Block2D\_SOV1:  T(x,y) in 2-D block') 
      xlabel('x location (cm)');   ylabel('y location (cm)') 
      zlabel('Temperature (C)'),   hold off                                  
% 
      nfig = nfig+1;  figure(nfig) 
      surf(xx*100,yy*100,T), shading interp, view(2), colorbar, hold on 
      [cc,hh] = contour3(x*100,y*100,T, [80 70 60 55 52.5]); 
      clabel(cc), set(hh,'EdgeColor','k') 
      axis equal 
      axis([0 Lx*100/2 0 Ly*100 50 90]) 
      title('Block2D\_SOV1:  T(x,y) in 2-D block') 
      xlabel('x location (cm)');   ylabel('y location (cm)') 
      zlabel('Temperature (C)'),   hold off                                  
% 
%   determine spatial heat flux distributions  
%   x-directed heat flux              
      n = 0;   merr = 1.0;   qx = zeros(Ny,Nx);  
      while merr > tol   &   n < maxt 
        n = n+1;   qxn = k*bn(n)*ln(n)*sin(ln(n)*xx).*sinh(ln(n)*yy); 
        qx = qx + qxn;   merr = max(max(abs(qxn))); 
      end 
      fprintf(1,'\n  Needed %3i terms for convergence of qx(x,y) \n\n',n) 
%   y-directed heat flux              
      n = 0;   merr = 1.0;   qy = zeros(Ny,Nx);  
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      while merr > tol   &   n < maxt 
        n = n+1;   qyn = -k*bn(n)*ln(n)*cos(ln(n)*xx).*cosh(ln(n)*yy); 
        qy = qy + qyn;   merr = max(max(abs(qyn))); 
      end 
      fprintf(1,'\n  Needed %3i terms for convergence of qy(x,y) \n\n',n) 
% 
%   plot the heat flux as a vector plot 
      nfig = nfig+1;  figure(nfig) 
      quiver(xx*100,yy*100,qx,qy),grid 
      axis([0 Lx*100/2 0 Ly*100]) 
      title('Block2D\_SOV1:  Heat flux vector plot for 2-D block') 
      xlabel('x location (cm)');     
      ylabel('y location (cm)')                                  
% 
%   plot magnitude of the heat flux 
      qmag = sqrt(qx.*qx + qy.*qy); 
      nfig = nfig+1;  figure(nfig) 
      surf(xx*100,yy*100,qmag/1000), shading interp, colorbar, hold on 
      [cc,hh] = contour3(x*100,y*100,qmag/1000); 
      clabel(cc), set(hh,'EdgeColor','k') 
      axis([0 Lx*100/2 0 Ly*100 0 14]) 
      title('Block2D\_SOV1:  Distribution of heat flux magnitude (kW/m^2)') 
      xlabel('x location (cm)');   ylabel('y location (cm)') 
      zlabel('Temperature (C)'),   hold off                                  
% 
%   now compute the heat flows across each surface (use all terms) 
      qtop1 = -k*sum(bn.*sin(ln*Lx/2).*cosh(ln*Ly)); 
      qtop2 = h*sum(bn.*sin(ln*Lx/2).*sinh(ln*Ly)./ln) - h*Te*Lx/2; 
      qrt = k*sum(bn.*sin(ln*Lx/2).*(cosh(ln*Ly)-1)); 
      qbot = -k*sum(bn.*sin(ln*Lx/2)); 
      qlt = 0; 
% 
      fprintf(1,'\n  Block2D_SOV1 -- Heat transfer (W) across boundaries for the right half of a 
2-D block \n') 
      fprintf(1,'    in top boundary (conduction):   %8.2f  \n',-qtop1) 
      fprintf(1,'    in top boundary (convection):   %8.2f  \n',-qtop2) 
      fprintf(1,'    out right boundary:             %8.2f  \n',qrt) 
      fprintf(1,'    out bottom boundary:            %8.2f  \n',-qbot) 
      fprintf(1,'    out left boundary:              %8.2f  \n',-qlt) 
% 
%   end of problem 
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